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Abstract—The paper concerns the issue of H∞ fuzzy filter
design for T-S fuzzy-model based system involving time-delay.
In the light of the Lyapunov stability theory, improved stability
criteria for the filtering system are developed, and corresponding
H∞ fuzzy filter design approaches are proposed as well, all the
derived results are given as the feasibility of LMIs. Besides, the
novel imperfect premise matching methodology is adopted to
derive the H∞ fuzzy filter, which allows the H∞ fuzzy filter
and the T-S fuzzy model have distinct membership functions
and different number of fuzzy rules, such design can provide
larger design flexibility and better robustness property. Finally,
two numerical examples are offered to clarify the validity and
the superiority of the designed method.
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I. INTRODUCTION

Filtering plays a significant role in signal processing, last

decades the filtering technology developed rapidly, various

methodologies about filter design have been proposed, such as

H2 filter and H∞ filter [1], etc. To mentions a few, the authors

of [2] presented an H∞ filter design approach for discrete

systems involving some different time-delays. The authors

of [3] investigate nonlinear systems relating to time-varying

delay, and they developed novel H∞ filter design approach in

their paper. Compared with other filters, the main merit of the

H∞ filter is that it can deal systems with uncertain parameters

and have no specific requirement for the external noises.

Besides, our research subject in this paper is nonlinear

system, which is commonly repersented as T-S fuzzy model[4]

in fuzzy control theory. When deriving the stability condition

for the TSFMB system, the Lyapunov-Krasovskii functional

(LKF) method is often adopted, which can obtain the results in

view of the feasibility of LMIs. Usually the stability conditions

derived with LKF method are conservative, to reduce the

conservatism, researchers have proposed various methods:

triple integral/summation terms [5] were introduced to make

the LKFs more appropriate; the Wirtinger-based inequality [6],

the free-matrix-based inequality were introduced to obtain

more accurate bound of the integral terms. In this paper, both

the T-S fuzzy model and the Lyapunov stability theory will be

employed.

When designing H∞ fuzzy filter for TSFMB system, the

PDC method [7] is usually adopted, which assumes that

the fuzzy filter and the T-S fuzzy model enjoy the uniform

membership functions and the uniform number of rules. The

PDC method can facilitate the filter design, however, the PDC

method will also limit the flexibility to choose the membership

functions for the fuzzy filter. To address such problems,

the imperfect premise matching technique was proposed [8].

Contrary to the PDC method, the imperfect premise matching

methodology allows the fuzzy H∞ filter and T-S fuzzy model

bear distinct membership functions and distinct number of

fuzzy rules, and in recent years some new results about

imperfect premise matching have been developed [9]. In this

paper we will adopt the imperfect premise matching method

to design H∞ filter.

Moreover, the nonlinear system we investigate in this paper

involves time-delay, which is a common phenomenon in

complex nonlinear systems can pose instability and deteriorate

the performance of the systems, therefore, the research about

time-delay is of great practical and theoretical significance.

And over the last decades, many significant results have been

derived [10]. Specially, in 2000, Cao and Frank [11] first

employed the T-S fuzzy model to describe the describe the

dynamics of the nonlinear system involving time-delay.

From the discussions above, we can conclude that when

designing fuzzy H∞ filter for TSFMB systems with time-

delay, the design flexibility will be limited with conventional

PDC method, and the derived stability conditions are conser-

vative with LKF method. Therefore, we aim to investigate an

improved fuzzy H∞ filter design method which is less conser-

vative, and the novel imperfect premise matching method will

be adopted. Besides, the structure of this paper is arranged

as follows: Section II provides related preliminaries about T-S

fuzzy model and fuzzy H∞ filter. In Section III, the system

stability is studied, and the corresponding H∞ filter design

methods are presented. Besides, in Section IV, some numerical

examples are offered to clarify the validity and superiority of



the designed approach in this paper. Last, Section V presented

the conclusion of the paper.

II. PRELIMINARIES

A T-S fuzzy-model-based filtering system involving time-

varying delay is considered

Plant Rule:

Establish a p-rule polynomial fuzzy model to represent the

dynamics of the nonlinear filtering system.

ẋ(t) =

p∑
i=1

ωi(x(t))[Aix(t) +Adix(t− d(t)) +Biw(t)]

y(t) =

p∑
i=1

ωi(x(t))(Cix(t) + Cdix(t− d(t) +Diw(t))

z(t) =

p∑
i=1

ωi(x(t))(Eix(t) + Edix(t− d(t)))

(1)

where x(t) represent the state vector of the system, z(t)
stands the unknown signal to be evaluated, y(t) denotes

output of the system, w(t) represents the noise signal which

belongs to arbitrary signal and satisfy w(t) ∈ L2 ∈ [0,∞).
Ai, Adi, Bi, Ci, Cdi, Di, Ei, Edi denote known system matri-

ces. Time delay d(t) is set as a continuously differentiable

function exhibiting the properties: 0 ≤ d(t) < d0, ḋ(t) ≤ ρ.

ωi(x(t)) stands for the grade of the normalized membership

satisfying: ωi(x(t)) ≥ 0 and
∑c

i=1 ωi(x(t)) = 1.

Filter Rule j:

Motivated by the work of [8], we plan to design the

polynomial fuzzy filter of order c as follows

ẋf (t) =
c∑

j=1

mj(xf (t))(Afjxf (t) +Bfjy(t)) (2)

zf (t) =
c∑

j=1

mj(xf (t))(Cfjxf (t)) (3)

where xf (t) and zf (t) represent the state and output of the

H∞ filter respectively. And Afj , Bfj , Cfj denote the filter

matrices that will be designed, j = 1, 2, . . . , c. mj(x(t)) repre-

sent the normalized membership grade exhibiting: mj(x(t)) ≥
0 for all i, and

∑c
j=1 mj(x(t)) = 1.

Based on the (1) and (2), and define the state vector of

filtering error system as ξ(t) = [xT (t), xT
f (t)]

T and e(t) =
z(t)− zf (t), we can derive the whole H∞ filtering system as

follows

ξ̇(t) =

p∑
i=1

c∑
j=1

ωi(x(t))mj(xf (t))(Āiξ(t) + Ādiξ(t− d(t))

+ B̄iw(t))
(4)

e(t) =

p∑
i=1

c∑
j=1

ωi(x(t))mj(xf (t))(Ēiξ(t) + Ēdiξ(t− d(t)))

(5)

where

Āi =

[
Ai 0

BfjCi Afj

]
, Ādi =

[
Adi 0

BfjCdi 0

]
,

B̄i =

[
Bi

BfjDi

]
, Ēi = [Ei − Cfj ], Ēd = [Edi 0]

So far, our objective of this paper can be summarized as

to derive a fuzzy filter of the form (2) satisfying the two

conditions:

(1) If w(t) = 0, The filtering system (4) can be asymptoti-

cally stable;

(2) For the given scalar γ > 0, if ξ(t) ≡ 0 for t ∈ [−d0, 0],
the following H∞ performance can be satisfied:

∫ T

0

‖e(t)‖2dt ≤ γ2

∫ T

0

‖w(t)‖2dt (6)

for all the T > 0 and w(t) ∈ L2[0,∞).
To simplify the computational complexity, we introduce the

following vectors:

Γ1 =
[
Āi ĀT

di 0 B̄i

]
,

Γ2 =
[
Ēi(t) Ēdi(t) 0 0

]
,

Ψ(t) = [ξT (t) ξT (t− d(t)) ξT (t− h) w(t)]T .

(7)

So we have

ξ̇(t) = Γ1ξ(t), e(t) = Γ2e(t) (8)

In addition, the following lemma are playing an important

role in the discussion of the following section.

Lemma 1 [12]: For matirx N =

[ −R L
LT −R

]
≤ 0, d(t) ∈

(0, h], and a vector function ẋ : [−h, 0) −→ Rn, the following

inequality is true.

−h

∫ t

t−h

ẋT (t)Rẋ(t) ≤ ηT (t)Γη(t) (9)

where

Γ =

⎡
⎣−R R+ L −L

∗ −2R− L− LT R+ L
∗ ∗ −R

⎤
⎦

η(t) =
[
xT (t) xT (t− d(t)) xT (t− h)

]
III. MAIN RESULTS

First the stability condition of (4) when w(t) = 0 is

considered:

A. Stability Analysis

Theorem 1: If w(t) = 0, the filtering system (4) is

asymptotically stable when the symmetric positive matrices

P,R,Q,L which can guarantee the following LMIs hold exist

Ω =

[
Ξ

√
hΓT

3 P
∗ −PR−1P

]
< 0 (10)

N =

[−R L
∗ −R

]
≤ 0 (11)



where

Ξ =

⎡
⎣Δ1 Δ2 −L

h∗ Δ3
1
h (R+ L)

∗ ∗ − 1
hR

⎤
⎦ ,

Δ1 = ĀT
i P + PĀi +Q− 1

h
R,

Δ2 = PĀdi +
1

h
(R+ L),

Δ3 = −(1− ρ)Q− 2

h
R− 1

h
L− 1

h
LT ,

Γ3 =
[
Āi ĀT

di 0
]
.

proof: The Lyapunov function is chosen as:

V (t, ξ(t)) =ξT (t)Pξ(t) +

∫ t

t−d(t)

ξT (s)Qξ(s)ds

+

∫ 0

−h

∫ t

t+θ

ξ̇(s)TRξ̇(s)dsdθ

(12)

Differentiating the (12) yields

V̇ (ξ(t)) =2ξT (t)P ξ̇(t) + ξT (t)Qξ(t)

− (1− ḋ(t))ξT (t− d(t))Qξ(t− d(t))

+ hξ̇(t)TRξ̇(t)−
∫ t

t−h

ξ̇(s)TRξ̇(s)ds

(13)

Based on the Lemma 1 and the property of the time-delay, we

can derive

V̇ (ξ(t)) ≤2ξT (t)P ξ̇(t) + ξT (t)Qξ(t)− (1− ρ)ξT (t

− d(t))Qξ(t− d(t)) + hξ̇(t)TRξ̇(t) + ηT (t)Γη(t)
(14)

note that
∑p

i=1 ωi =
∑c

j=1 mj =
∑p

i=1

∑c
j=1 ωimj = 1, we

have

V̇ (ξ(t)) ≤
p∑

i=1

c∑
j=1

ωimjη
T (t)Ωη(t) (15)

where Ω is defined as (10), and according to Lyapunov

stability theory, Theorem 1 hold. Thus the proof is completed.

Next we will give a criterion that not only the asympotically

stable condition can be satisfied, but also the second condition

(6) will be met.

Theorem 2: The filtering system (4) can be asymptotically

stable, as well as the second condition of the the H∞ (6)
can be met, when symmetric positive matrices P,R,Q,L
satisfying the LMIs (16),(17) exist:

Ω1 =

⎡
⎣Ξ2

√
hΓT

1 P ΓT
2

∗ −PR−1P 0
∗ ∗ −I

⎤
⎦ (16)

N =

[−R L
LT −R

]
≤ 0 (17)

where

Ξ2 =

⎡
⎢⎢⎣
Δ1 Δ2 −L

h PB̄i

∗ Δ3
1
h (R+ L) 0

∗ ∗ − 1
hR 0

∗ ∗ ∗ −γ2

⎤
⎥⎥⎦ ,

and Δ1,Δ2,Δ3 are defined in Theorem 1, and Γ1,Γ2 are

defined in (7).

proof: Assume ξ(t) = 0, t ∈ [d0, 0], and the Lyapunov

candidate is set as (12), applying similar derivation process,

we have

V̇ (ξ(t)) =

p∑
i=1

c∑
j=1

hijΨ
T (t)Ω2Ψ(t) (18)

where

Ω2 =

[
Ξ1

√
hΓT

1 P
∗ −PR−1P

]

Ξ1 =

⎡
⎢⎢⎣
Δ1 Δ2 −L

h PB̄i

∗ Δ3
1
h (R+ L) 0

∗ ∗ − 1
hR 0

∗ ∗ ∗ 0

⎤
⎥⎥⎦

and Γ1 is defined as (7).

As V (T ) ≥ 0 and V (0) = 0 when t = 0, we can derive

J(T ) =

∫ T

0

(eT (t)e(t)− γ2wT (t)w(t))dt

≤
∫ T

0

(eT (t)e(t)− γ2wT (t)w(t))dt+ V (T )− V (0)

=

∫ T

0

(eT (t)e(t)− γ2wT (t)w(t) + V̇ (t))dt

=

∫ T

0

(

p∑
i=1

c∑
j=1

ωimjΨ
T (t)Ω1Ψ(t))dt

(19)

Thus we can conclude that if the LMIs (17) and (16) hold,

then (6) will be true for all T > 0 and any nonzero w(t) ∈
L2[0,∞). To obtain less conservative result, we will derive

a novel criterion which is membership function information

dependent in the following part.

Denote
∑p

i=1

∑c
j=1 ωimj =

∑p
i=1

∑c
j=1 hij , according to



(19) and using some algebraic manipulations, we have

J(T ) =

p∑
i=1

c∑
j=1

hijΨ
T (t)Ω1Ψ(t)

≤
p∑

i=1

c∑
j=1

hijΨ
T (t)Ω1Ψ(t) +

p∑
i=1

c∑
j=1

(h̄ij

− hij)Ψ
T (t)MijΨ(t)

=

p∑
i=1

c∑
j=1

hijΨ
T (t)(Ω1 −Mij)Ψ(t)

+

p∑
i=1

c∑
j=1

h̄ijΨ
T (t)MijΨ(t)

=

p∑
i=1

c∑
j=1

hijΨ
T (t)(Ω1 −Mij +

p∑
r=1

c∑
s=1

h̄rsMrs)Φ(t)

(20)

where h̄ij ≥ hij is the upper bound of the hij , Mij = MT
ij ≥

0. Then we have the following condition:

Theorem 3: The filtering system (4) can be asymptotically

stable, as well as the second condition of the the H∞ (6)
can be met, when symmetric positive matrices P,R,Q,L
satisfying the LMIs (21) and (22) hold

Ω1 −Mij +

p∑
i=1

c∑
j=1

h̄ijMij < 0 (21)

N =

[ −R L
LT −R

]
≤ 0 (22)

where Ω1 is defined in (16) and h̄ij ≥ hij is the upper bound

of the hij .

Remark 1: Theorem 3 presents an improved membership

function information dependent stability condition for TSFMB

system (4). It is less conservative, this is because the mem-

bership functions of the FMB system is included in, and also

because one can freely choose membership functions of the

fuzzy filter. It is the main contribution compared with PDC-

based methods.

B. H∞ Filter Design

In this part, in the light of discussions above, we will design

corresponding fuzzzy H∞ filter for the system (1).

Theorem 4: For fuzzy system (1), if the attenuation level

γ > 0 and scalar σ, ρ are given, an feasible H∞ filter (2) exists

when the symmetric positive matrices Q̃, R̃, L̃, Ãf , B̃f , C̃f and

symmetric semi-positive matrices M̃ij satisfying the LMIs

(23)-(36) exist.

P̃ =

[
P11 P̃22

P̃22 P̃22

]
> 0 (23)

Ω3 −Mij +

p∑
i=1

c∑
j=1

h̄ijMij < 0 (24)

Ñ =

[ −R̃ L̃

L̃T −R̃

]
≤ 0 (25)

where

Ω3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Δ4 Δ5 − L̃
h Ξ̃3

√
hΞ̃T

1 Δ6

∗ Δ2
R̃+L̃
h 0

√
hΞ̃T

2 Ēd

∗ ∗ R̃
h 0 0 0

∗ ∗ ∗ −γ2
√
hΞ̃T

3 0
∗ ∗ ∗ ∗ −2σP + σ2R 0
∗ ∗ ∗ ∗ ∗ −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

Δ4 = Sym{Ξ̃1}+ Q̃− R̃

h
,

Δ5 = Ξ̃2 +
R̃+ L̃

h
,

Ξ̃1 =

[
P11Ai + B̃fjCi Ãfj

P̃22Ai + B̃fjCi Ãfj

]
,

Ξ̃2 =

[
P11Adi + B̃fjCdi 0

P̃22Adi + B̃fjCdi 0

]
,

Ξ̃3 =

[
P11Bi + B̃fjDi

P̃22Bi + B̃fjDi

]
,

Δ6 =
[
Ei −C̃fj

]
.

And a feasible H∞ filter realization can be obtained by

Afj = P̃−1
22 Ãfj , Bfj = P̃−1

22 B̃fj , Cfj = C̃fj (26)

Proof: Firstly, for any scalar δ, we have (δR−P )R−1(δR−
P ) ≥ 0, then we have the following condition

−PR−1P ≤ −2δP + δ2R (27)

using the inequality (27), we can get

Ω1 ≤Ω4

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Δ1 Δ2 −L
h PB̄i

√
hĀT

i P ĒT (t)

∗ Δ3
R+L
h 0

√
hĀT

diP ĒT
d (t)

∗ ∗ − 1
hR 0 0 0

∗ ∗ ∗ −γ2
√
hB̄T

i P 0

∗ ∗ ∗ ∗ −−2δP+δ2R
h 0

∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0

(28)

As a result, (21) holds if the following inequality holds

Ω4 −Mij +

p∑
i=1

c∑
j=1

h̄ijMij < 0 (29)

Introduce the partition as

P =

[
P11 P12

∗ P22

]
(30)

where P11 > 0, P22 > 0, and it can be supposed that P12 is

invertible via introducing a tiny perturbation if it is necessary,

Let

Υ =

[
I 0
0 P12P

−1
22

]
(31)



Denote T = diag{Υ,Υ,Υ, I,Υ, I}, and using T T and T to

pre- and post-multiply (29), respectively. Then we can obtain

(24) with the following changes of variable

P̃22 = P12P
−1
22 PT

12, R̃ = ΥTRΥ, Q̃ = ΥTQΥ,

L̃ = ΥTLΥ, M̃ij = T TMijT , Ã = P12AfP
−1
22 PT

12,

B̃ = P12Bf , C̃ = CfP
−1
22 PT

12

Further, the transfer function of the H∞ can be presented

as

Tzfy(s) = Cf (t)(sI −Af )
−1Bf (t) (32)

And using the filter matrices introduced in front yields

Tzfy(s) = C̃f (t)(sI − P̃−1
22 Ãf )

−1P̃−1
22 B̃f (t) (33)

So far, we complete the proof of Theorem 4.

The criterion introduced in Theorem 4 can produce sat-

isfactory results, however, it is necessary to point out that

the following Corollary also work to address fuzzy H∞ filter

design problem.

Corollary 1: For fuzzy system (1), if the attenuation level

γ > 0 and scalar σ, ρ are given, an feasible H∞ filter (2) exists

when the symmetric positive matrices Q̃, R̃, L̃, Ãf , B̃f , C̃f

satisfying the LMIs (34)-(36) hold.

P̃ =

[
P11 P̃22

P̃22 P̃22

]
> 0 (34)

Ω3 < 0 (35)

Ñ =

[ −R̃ L̃

L̃T −R̃

]
≤ 0 (36)

where Ω3 is defined in Theorem 4.

Remark 2: Compared with Theorem 4, Corollary 1 does

not contain information about the membership functions, so it

will be more realizable in practice. Besides the filter designed

by Corollary 1 can satisfy most engineering requirement in

practice, as a result, it is presented in this paper.

IV. NUMERICAL EXAMPLES

Next, two numerical examples will be offered to testify the

validity of the derived results.

A. Example 1

Consider the TSFMB system provided in the literature [? ]

with

ω1(x1(t)) = 1− 0.5

1 + e−3−x1(t)
, ω2(x1(t)) = 1− ω1(x1(t)),

m1(x1(t)) = 0.7− 0.5

1 + e4−x1(t)
,m2(x1(t)) = 1−m1(x1(t)).

To persuasively illustrate the validity and superiority of the

designed method, we choose several groups of d0 and σ to

find the minimum attenuation level γmin, as the size of γmin

can reflect the conservatism of the filter design method, i.e.,

the smaller γmin means less conservatism of the method. The

computational results of γmin are listed in the following tables.

Table I The minimum attenuation level γmin for d0 = 0.5

method σ = 0.7 σ = 1 σ = 2 σ = 5 σ = 10 σ = 20
[13] 0.59 0.38 0.35 0.34 0.34 0.37
[14] 0.42 0.27 0.25 0.24 0.24 0.26
[15] 0.4163 0.2661 0.2452 0.2371 0.2375 0.2537

Th. 4 0.33 0.22 0.20 0.19 0.19 0.20

Table II The minimum attenuation level γmin for d0 = 0.8

method σ = 0.7 σ = 1 σ = 2 σ = 5 σ = 10 σ = 20

[13] 11.98 0.83 0.38 0.35 0.37 1.01

[14] 8.54 0.59 0.27 0.25 0.26 0.70

[15] 8.487 0.5821 0.2607 0.2445 0.2530 0.4338

Th. 4 0.88 0.47 0.21 0.20 0.20 0.21

I. From Table I, Table II, it can be concluded that the designed

method can produce more satisfactory results than the ones in

literature [13–15]. Next will provide an example to clarify the

effect of the imperfect premise matching method.

B. Example 2

Consider a TSFMB system (1) involving time-delay with

A1 =

[−2.1 0.1
1 −2

]
,A2 =

[ −1.9 0
−0.2 −1.1

]
,A3 =

[ −1 0
1 0

]
;

Ad1 =

[−1.1 0.1
−0.8 −0.9

]
,Ad2 =

[−0.9 0
−1.1 −1.2

]
,Ad3 =

[−1 0
0.5 0

]
;

B1 =

[
1

−0.2

]
,B2 =

[
0.3
0.1

]
,B3 =

[
0.5
−1

]
;

C1 =
[
1 0

]
,C2 =

[
0.5 −0.6

]
,C3 =

[
0.5 −0.6

]
;

Cd1 =
[ −0.8 0.6

]
,Cd2 =

[ −0.2 1
]
,Cd3 =

[
0 0.5

]
;

E1 =
[
1 −0.5

]
,E2 =

[ −0.2 0.3
]
,E3 =

[ −0.6 1
]
;

Ed1 =
[
0.1 0

]
,Ed2 =

[
0 0.2

]
,Ed3 =

[
0.2 0.1

]
.

and the membership functions are chosen as

ω1(x1(t)) = 1− 0.6

1 + e−3−x1(t)
, ω2(x1(t)) =

0.4

1 + e−3−x1(t)
,

ω3(x1(t)) = 1− ω1(x1(t))− ω2(x1(t)),

m1(x1(t)) = 0.7− 0.5

1 + e4−x1(t)
,m2(x1(t)) = 1−m1(x1(t)).

The scalar ρ is set as ρ = 0.2, with diffierent σ and d0, we

can get the following results

Table III The minimum attenuation level γmin for d0 = 0.5

method σ = 0.7 σ = 1 σ = 2 σ = 5 σ = 10 σ = 20

Corollary 1 0.42 0.27 0.25 0.24 0.24 0.25

Theorem 4 0.21 0.16 0.14 0.11 0.10 0.11

Table IV The minimum attenuation level γmin for d0 = 0.8

method σ = 0.7 σ = 1 σ = 2 σ = 5 σ = 10 σ = 20

Corollary 1 9.63 0.60 0.27 0.25 0.26 0.72

Theorem 4 0.88 0.26 0.15 0.13 0.11 0.12



Remark 3: From Example 2, we can clearly see that the

methods proposed in this paper allow the fuzzy model and

the fuzzy H∞ filter bear totally distinct membership functions

and distinct number of fuzzy rules. This design can supply

greater design flexibility for the fuzzy H∞ filter design, which

means the structure complexity and implementation cost can

be lowered through choosing simple membership functions.

What’s more, it can be seen that Theorem 4 can produce less

conservative results than Corollary 1, this is because Theorem

4 is membership function dependent method while Corollary

1 is membership function independent method.

V. CONCLUSION

This paper studies H∞ fuzzy filter design issue for nonlinear

systems with time-varying delay. The nonlinear system is

described by T-S fuzzy model, and based on the Lyapunov

theory and imperfect premise matching method, some im-

proved stability criteria and new H∞ filter design approaches

have been proposed. Moreover, some numerical examples are

offered to clarify the validity and superiority of the designed

approach.
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