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Abstract—This paper investigates stability and stabilization
analyses issue for T-S fuzzy-model-based systems involving
distributed time-delay. The novel imperfect premise matching
methodlogy is employed to derive fuzzy controller, unlike con-
ventional PDC method, this novel technique allows the designed
fuzzy controller and the T-S fuzzy model to have distinct
membership functions and number of rules, as a result, great
flexibility and better robustness can be achieved. Moreover, with
the introduction of one novel inequality which is tighter than
other existing ones, relaxed LMI-based stability and stabilization
criteria are obtained in term of the Lyapunov stability theory.
Lastly, two numerical examples are offered to prove the valadity
of the derived results.
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I. INTRODUCTION

The T-S fuzzy model [1] is significant instrument to describe

the dynamics of fuzzy systems, when designing fuzzy con-

trollers for TSFMB system, the PDC [2] method is commonly

used, which assumes that the fuzzy controller to be designed

and the T-S fuzzy model enjoy the uniform membership

functions and uniform number of rules. Such design allows

the stability analysis to be conducted effectively, however, the

PDC approach can also limit the design flexibility. To address

this problem, some new alternative approaches are introduced,

among them, one effective method named imperfect premise

matching which was proposed by Lam in 2009 [3]. This novel

design technology allows the fuzzy controller to be designed

and the constructed fuzzy model possess diverse membership

functions and number of rules, thus successfully resolve the

problems of the PDC approach. In this paper, we are going

to employ this novel imperfect premise matching method to

design the fuzzy controller.

What’s more, time delay frequently appeared in control

systems, which can pose instability of the system and de-

teriorate the system performance. In recent decades, many

research results dealing with the time-delay cases in control

systems have been proposed [4]. To investigate the control

systems involving time-delay, the stability analysis issue must

be addressed first, and the Lyapunov-Krasovskii functional

(LKF) method is the common choice to do with such cases,

this method can effectively work out the stability analysis issue

in the light of the feasibility of LMIs. However, the derived

results with LKF method are conservative, to reduce the

conservatism, researchers have made great efforts: the triple

integral/summation terms and the free-weighting matrix [5]

were added to the Lyapunov function candidate; the Wirtinger-

based inequality [6], the free-matrix-based inequality [7] were

derived to obtain more accurate bound of the integral terms.

More recently, one new integral inequality was proposed in [8],

which considers the information of the double integral of the

system state, and further reduces the conservatism. In the later

section, We will employ this new integral inequality to resolve

the stability and stabilization analyses problem for the TSFMB

system.
From the discussions above, we can see that when analyzing

the stability and stabilization for the TSFMB system, the

conventional PDC method will limit the flexibility designing

the fuzzy controller, and the derived results with LKF method

are conservative. To solve these problems, we will applying

the novel imperfect premise matching method to design fuzzy

controller and employing the new integral inequality to de-

velop the stability and stabilization conditions for the TSFMB

system. Besides some numerical examples will be provided to

clarify the valadity of the designed results.

II. PRELIMINARIES

A TSFMB nonlinear control system with distributed time

delay is considered.

Fuzzy Model:
Construct a p-rule polynomial fuzzy model to represent the

nonlinear system with time-delay.

ẋ(t) =

p∑
i=1

ωi(x(t))
(
Aix(t) +A1ix(t− h) +A2i

∫ t

t−h

x(s)ds

+Biu(t)
)

(1)



where x(t) ∈ R denotes the vector of the system state; Ai ∈
R

n×n,A1i ∈ R
n×n,A2i ∈ R

n×n and Bi ∈ R
n×m represent

the system matrices and the system input matrices; u(t) ∈
R

m×1 is system input; the time delay h is a constant satisfying

h ∈ [hmin, hmax]; ωi(x(t)) stands for the normalized grade

of membership, and satisfying: ωi(x(t)) ≥ 0 for all i, and∑p
i=1 ωi(x(t)) = 1.

Fuzzy Controller:

In this study, a c-rule polynomial fuzzy controller to be

designed to stabilize the system (5) is considered:

u(t) =

p∑
j=1

mj(x(t))KJx(t) (2)

where Kj ∈ R
m×n represents the feedback gain of jth rule;

mj(x(t)) stands for the normalized grade of membership, and

satisfying: mj(x(t)) ≥ 0 for all i, and
∑p

j=1 mj(x(t)) = 1.

According to (1) and (2), the closed-loop fuzzy control

system can be easily acquired:

ẋ(t) =

p∑
i=1

p∑
j=1

ωi(x(t))mi(x(t))
(
Gijx(t) +A1ix(t− h)

+A2i

∫ t

t−h

x(s)ds+Biu(t)
)

(3)

where Gij = Ai +BiKj , i = 1, 2, ..., p, j = 1, 2, ..., p
Remark 1: From the expression (5) and expression (2), it

can be clearly seen that the T-S fuzzy model and the fuzzy

controller tp be designed have distinct membership functions

and number of rules, which is not allowed by the conventional

PDC method. The PDC method cannot deal with the nonlinear

system with uncertainty, and the specific rule will complicate

the structure of the designed fuzzy controller unnecessarily in

some circumstances.

To simplify complex matrices and vector representations,

the following nomenclature is given:

ei = [0n×(i−1)n In 0n×(4−i)n], i = 1, 2, 3, 4,

η1(t) =

∫ t

t−h

x(s)ds, η2(t) =

∫ t

t−h

∫ s

t−h

x(u)duds,

ε(t) = [xT (t) ηT1 (t) ηT2 (t)]
T ,

ζ(t) =
[
xT (t) xT (t− h) 1

hη
T
1 (t)

2
h2 η

T
2 (t)

]T
,

Υi = [Ai A1i hA2i 0].

In addition, to simplify computational complexity,

ωi(x(t)), i = 1, 2, ..., p and mj(x(t)), j = 1, 2, ..., p are

denoted as ωi(x(t)) = ωi and mj(x(t)) = mj in the

following sections.

Besides, the following lemma is playing a significant role

in the later section.
Lemma 1 [8]: Assuming that function x can be differen-

tiated, and satisfy: [α, β] → R
n. For N1,N2,N3 ∈ R

4n×n,

and R ∈ R
n×n > 0, the following inequality is true:

−
∫ β

α

ẋT (s)Rẋ(s)ds ≤ ξTΩξ, (4)

where

Ω = τ(N1R
−1NT

1 +
1

3
N2R

−1NT
2 +

1

5
N3R

−1NT
3 )

+ Sym{N1Δ1 +N2Δ2 +N3Δ3},
Δ1 = e1 − e2, Δ2 = e1 + e2 − 2e3,

Δ3 = e1 − e2 − 6e3 + 6e4,

ξ = [xT (β) xT (α) 1
τ

∫ β

α
xT (s)ds 2

τ2

∫ β

α

∫ s

α
xT (u)duds]

T ,

τ = β − α.

III. MAIN RESULTS

Firstly, the stability condition of the autonomous system (5)
will be investigated.

A. Stability Analysis

ẋ(t) =

p∑
i=1

ωi(Aix(t)+A1ix(t−h)+A2i

∫ t

t−h

x(s)ds). (5)

Theorem 1: For the given constant h ∈ [hmin,hmax
], the

TSFMB autonomous system (5) can be asymptotically sta-

ble when symmetric matrices P,R,Q, and symmetric semi-

positive matrices Fij,Tij exist, so that the following LMIs

hold.

Φi =

⎡
⎢⎢⎣
Φ1i +Φ3

√
hN1

√
hN2

√
hN3

∗ −R 0 0
∗ ∗ −3R 0
∗ ∗ ∗ −5R

⎤
⎥⎥⎦ < 0, (6)

where

Φ1i = Sym{ΔT
4 PΔ5i}+ eT1 Qe1 − eT2 Qe2 + hΥT

i RΥi,

Δ4 =
[
eT1 heT3

h2

2 eT4

]T
,

P =

⎡
⎣P11 P12 P13

∗ P22 P23

∗ ∗ P33

⎤
⎦ ,

Δ5i =
[
ΥT

i eT1 − eT2 heT3 − heT2
]T

,

Φ3 = Sym{N1Δ1 +N2Δ2 +N3Δ3},
i = 1, 2, ..., p,

and Δ1,Δ2,Δ3 are defined in Lemma 1.

Proof: Choosing the following Lyapunov function candi-

date:

V (t) =εT (t)Pε(t) +

∫ t

t−h

xT (s)Qx(s)ds

+

∫ 0

−h

∫ t

t+θ

ẋT (s)Rẋ(s)dsdθ

(7)

Differentiating the above equations yields:

V̇ (t) =

p∑
i=1

ωi

(
ζT (t)Φ1iζ(t)−

∫ t

t−h

ẋT (s)Rẋ(s)ds
)

(8)



according to Lemma 1, we can obtain:

−
∫ t

t−h

ẋT (s)Rẋ(s)ds

≤ ζT (t)

[
hN1R

−1NT
1 +

h

3
N2R

−1NT
2 +

h

5
N3R

−1NT
3

+ Sym{N1Δ1 +N2Δ2 +N3Δ3}
]
ζ(t)

= ζT (t) (Φ2 +Φ3) ζ(t)
(9)

where

Φ2 = hN1R
−1NT

1 +
h

3
N2R

−1NT
2 +

h

5
N3R

−1NT
3

From (14), we have:

V̇ (t) ≤
p∑

i=1

ωiζ
T (t)(Φ1i +Φ2 +Φ3)ζ(t)

=

p∑
i=1

ωiζ
T (t)Φiζ(t)

(10)

where Φi = Φ1i +Φ2 +Φ3, i = 1, 2, ..., p.
So if Φi < 0, V̇ (x(t)) < 0 can be derived. And applying

the Schur Complement theory, we can get equation (6), i.e.,

the system (5) is asymptotically stable when equation (6)
holds, and thus accomplish the proof of Theorem 1.

For the sake of eliminating the free matrices N1,N2,N3

in Theorem 1 to decrease the computational complexity, the

following corollary is given:

Corollary 1: For the given constant h ∈ [hmin, hmax], the

TSFMB autonomous system (5) can be asymptotically stable

when symmetric positive matrices P,R,Q, and symmetric

semi-positive matrices Fij,Tij exist, such that Φi < 0, i =
1, 2, .., p, where Φi is defined as Theorem 1, and N1,N2,N3

satisfy the following equations

N1 =
1

h

[−R R 0 0
]T

,

N2 =
3

h

[−R −R 2R 0
]T

,

N3 =
5

h

[−R R 6R −6R
]T

.

Though the Theorem 1 and Corollary 1 can successfully

address the stability analysis problem of (5), neither of them

could be used to construct fuzzy controller for the afore-

mentioned system. Next we would mainly investigate how to

construct the fuzzy controller to stabilize the system (5).

B. Stabilization Analysis

Theorem 2: For the given constants h ∈ [hmin, hmax], σ
and ti, i = 2, 3, .., 6, the fuzzy system (3) can be asymp-

totically stable when the following inequality mj(x(t)) −
ρjωj(x(t)) ≥ 0, 0 < ρj < 1, j = 1, 2, ..., p are true for

all the x(t) and j, and symmetric positive matrices R̄, Q̄,
Fij , Λi, K̄j , X, i = 1, 2, ..., p, j = 1, 2, ..., p exist, so that

the LMIs (24), (27)-(29) hold. And under such cirmustance,

the state feedback gain can be represented as: Kj = K̄jX
−1.

Proof: Just like the proof process of Theorem 1, we

substitute Ai for Gij = Ai + BiKj , and since the TSFMB

control system with distributed time-delay is (3) now, equation

(8) will be instead by the following equation:

V̇ (t) =

p∑
i=1

p∑
j=1

ωimj

(
ζT (t)Φ1ijζ(t)−

∫ t

t−h

ẋT (s)Rẋ(s)ds
)

(11)

and further, we have:

V̇ (t) ≤
p∑

i=1

p∑
j=1

ωimjζ
T (t)(Φ1ij +Φ2 +Φ3)ζ(t) (12)

The ζT (t)(Φ1ij + Φ2 + Φ3)ζ(t) can also be denoted as

ζT (t)(M1i +M2 +M3ij +
∑9

i=4 Miζ(t).
where

M1ij =⎡
⎢⎢⎣

P11Gij +P12 Π2 hP11A2i +P13h 0
0 0 0 0

hPT
12Gij + hP22 Π3 h2PT

12 + h2P23 0
h2

2 PT
13Gij +

h2

2 P23 Π4
h2

2 PT
13A2i +

h2

2 P33 0

⎤
⎥⎥⎦ ,

Π2 = P11A1i −P12 − hP13,

Π3 = hPT
12A1i − hP22 − h2P23,

Π4 =
h2

2
PT

13A1i − h2

2
PT

23 −
h3

2
P33,

M2 =

⎡
⎢⎢⎣
Q 0 0 0
0 Q 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

M3ij =⎡
⎢⎢⎣
GT

ijRGij GT
ijRA1i GT

ijR(hA2i) 0
AT

1iRGij AT
1iRA1i AT

1iR(hA2i) 0
hAT

2iRGij hAT
2 RA1i (hAT

2 )R(hA2i) 0
0 0 0 0

⎤
⎥⎥⎦ .

i = 1, 2, ..., p, j = 1, 2, ..., p,

M4 =
1

h

⎡
⎢⎢⎣

RT −RT 0 0
−RT RT 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

M5 =
3

h

⎡
⎢⎢⎣

RT RT −2RT 0
RT RT −2RT 0

−2RT −2RT 4RT 0
0 0 0 0

⎤
⎥⎥⎦ ,

M6 =
5

h

⎡
⎢⎢⎣

RT −RT −6RT 6RT

−RT RT 6RT −6RT

−6RT 6RT 36RT −36RT

6RT −6RT −36RT 36RT

⎤
⎥⎥⎦ .

M7 = Sym

⎧⎪⎪⎨
⎪⎪⎩

1

h

⎡
⎢⎢⎣
−RT RT 0 0
RT −RT 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

,



M8 = Sym

⎧⎪⎪⎨
⎪⎪⎩

3

h

⎡
⎢⎢⎣
−RT −RT 2RT 0
−RT −RT 2RT 0
2RT 2RT −4RT 0
0 0 0 0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

,

M9 = Sym

⎧⎪⎪⎨
⎪⎪⎩

5

h

⎡
⎢⎢⎣
−RT RT 6RT −6RT

RT −RT −6RT 6RT

6RT −6RT −36RT 36RT

−6RT 6RT 36RT −36RT

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

.

Which means V̇ (t) < 0, if

M1i+M2+M3ij +M4+M5+M6+M7+M8+M9 < 0
(13)

Define some new variables :

P12 = t2P11,P13 = t3P11,P22 = t4P11,

P23 = t5P11,P33 = t6P11,
(14)

let equation (13) be pre-multiplied and post-multiplied by

diag
[
X X X X

]
and its transpose respectively, and in-

troduce some new variables as:

X = P−1
11 , R̄ = XRX, Q̄ = XQX,

K̄j = KjX, Ḡij = AiX+BiK̄j ,

Ā1i = A1iX, Ā2i = A2iX, B̄i = BiX,

N̄1 =
1

h

[−R̄ R̄ 0 0
]T

,

N̄2 =
3

h

[−R̄ −R̄ 2R̄ 0
]T

,

N̄3 =
5

h

[−R̄ R̄ 6R̄ −6R̄
]T

,

Ῡij = [Ḡij Ā1i hĀ2i 0],

Δ̄5ij =
[
ῩT

ij X(eT1 − eT2 ) hX(eT3 − heT2 )
]T

,

(15)

then we can obtain:

Sym{ΔT
4 P̄Δ̄5ij}+ eT1 Q̄e1 − eT2 Q̄e2

+ hN̄1R̄
−1N̄T

1 +
h

3
N̄2R̄

−1N̄T
2 +

h

5
N̄3R̄

−1N̄T
3

+ Sym{N̄1Δ1 + N̄2Δ2 + N̄3Δ3}+ hΥT
ijRΥij

< 0

(16)

So we have:

V̇ (t) ≤
p∑

i=1

p∑
j=1

ζT (t)ωimjΦ̄ijζ(t)

=

p∑
i=1

p∑
j=1

ωimjζ
T (t)

(
Φ̄1ij + Φ̄2 + Φ̄3

)
< 0

(17)

where

Φ̄1ij = Sym{ΔT
4 P̄Δ̄5ij}+ eT1 Q̄e1 − eT2 Q̄e2

Φ̄2 = hN̄1R̄
−1N̄T

1 +
h

3
N̄2R̄

−1N̄T
2 +

h

5
N̄3R̄

−1N̄T
3 + hΥT

ijRΥij

Φ̄3 = Sym{N̄1Δ1 + N̄2Δ2 + N̄3Δ3}
i = 1, 2, ..., p, j = 1, 2, ..., p,

Since

p∑
i=1

p∑
j=1

ωi(ωj −mj)Vi =

p∑
i=1

ωi

⎛
⎝ p∑

j=1

ωj −
p∑

j=1

mj

⎞
⎠Vi = 0

(18)

where Vi > 0, i = 1, 2, ..., p, and are arbitrary matrices.

Then introduce some new terms to equation (17) to reduce

conservatism:

V̇ (t ≤
p∑

i=1

p∑
j=1

ζT (t)ωimjΦ̄ijζ(t)

=

p∑
i=1

p∑
j=1

ζT (t)ωimjΦ̄ijζ(t) +

p∑
i=1

p∑
j=1

ωi(ωi −mj + ρjωj

− ρjωj)ζ
T (t)Λiζ(t) +

p∑
i=1

p∑
j=1

ωi(ωj − ρjωj)ζ
T (t)Λiζ(t)

=

p∑
i=1

p∑
j=1

ωiωjζ
T (t)[ρjΦij +Λi − ρjΛi]ζ(t)

+

p∑
i=1

p∑
j=1

ωi(mj − ρjωj)ζ(t)(Φij −Λi)ζ(t)

(19)

where Λi = ΛT
i ∈ R

4n×4n > 0, i = 1, 2, ..., p are arbitrary

matrices, and scalar 0 < ρj < 1, j = 1, 2, ..., p can be chosen

to satisfy mj − ρjωj ≥ 0 for all the j and x(t).
Assuming

Φij −Λi < 0 (20)

we can obtain

V̇ (t) ≤
p∑

i=1

p∑
j=1

ωiωjζ
T (t)[ρjΦij +Λi − ρjΛi]ζ(t)

=

p∑
i

ω2
i ζ

T (t)[ρiΦii +Λi − ρiΛi]ζ(t)

+

p∑
j=1

∑
i<j

ωiωjζ
T (t)

[
(ρjΦij +Λi − ρjΛi)

+ (ρiΦji +Λj − ρiΛj)
]
ζ(t)

(21)

So if

Fii > ρiΦii +Λi − ρiΛi, i = 1, 2, ..., p (22)

Fij + Fji >(ρjΦij +Λi − ρjΛi) + (ρiΦji +Λj

− ρiΛj), j = 1, 2, ..., p; i < j
(23)

where Fij = FT
ij , i, j = 1, 2, ..., p

From equation (22)− (23), we can derive

V̇ (t) ≤

⎡
⎢⎢⎢⎣
ω1ζ(t)
ω2ζ(t)

...

ωnζ(t)

⎤
⎥⎥⎥⎦

T

F

⎡
⎢⎢⎢⎣
ω1ζ(t)
ω2ζ(t)

...

ωnζ(t)

⎤
⎥⎥⎥⎦ (24)

Consequently, if F < 0 and the conditions (20), (22), (23)
are satisfied, the V̇ (t) < 0, which means the fuzzy system (3)
is asymptotically stable.



In addition, as R = RT > 0, for any scalar σ, the following

inequality holds:

(
σR−1 −X

)
R

(
σR−1 −X

)
> 0 (25)

then we have:

−R−1 < − 2

σ
X+

1

σ2
R̄ (26)

Applying the Schur Complement lemma and the inequality

(26) to the inequalities (20), (22), (23), we can get

⎡
⎢⎢⎢⎢⎢⎣

Π1 N̄1 N̄2 N̄3 ῩT
ij

∗ − R̄
h 0 0 0

∗ ∗ − 3R̄
h 0 0

∗ ∗ ∗ − 5R̄
h 0

∗ ∗ ∗ ∗
1
σ2 R̄− 2

σX

h

⎤
⎥⎥⎥⎥⎥⎦
< 0, (27)

where Π1 = Φ̄1ij + Φ̄3 −Λi, i = 1, 2, ..., p, j = 1, 2, ..., p,

⎡
⎢⎢⎢⎢⎢⎢⎣

Π2 N̄1 N̄2 N̄3 ῩT
ij

∗ − R̄
hρi

0 0 0

∗ ∗ − 3R̄
hρi

0 0

∗ ∗ ∗ − 5R̄
hρi

0

∗ ∗ ∗ ∗
1
σ2 R̄− 2

σX

hρi

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0, (28)

where Π2 = ρiΦ̄1ii+ρiΦ̄3+Λi−ρiΛi−Qii, i = 1, 2, ..., p,

⎡
⎢⎢⎢⎢⎢⎢⎣

Π3 N̄1 N̄2 N̄3 ῩT
ij

∗ − R̄
h(ρi+ρj)

0 0 0

∗ ∗ − 3R̄
h(ρi+ρj)

0 0

∗ ∗ ∗ − 5R̄
h(ρi+ρj)

0

∗ ∗ ∗ ∗
1
σ2 R̄− 2

σX

h(ρi+ρj)

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0,

(29)

where Π3 = (ρjΦ̄1ij+ρjΦ̄3+Λi−ρjΛi)+(ρiΦ̄1ji+ρiΦ̄3+
Λj − ρiΛj) − Qij − Qji, i = 1, 2, ..., p, j = 1, 2, ..., p, thus

complete the proof of Theorem 2.

IV. NUMERICAL EXAMPLES

In this section, two examples are offered to prove the

validity of the derived results.

A. Example 1

Consider the TSFMB autonomous system (5) with where

A1 =

[−2 0
0 −0.9

]
,A2 =

[−1 0.5
0 −1

]
,A11 =

[−1 0
−1 −1

]
,

A12 =

[−1 0
0.1 −1.5

]
,A21 =

[
0 0
0 0

]
,A22 =

[
0 0
0 0

]
,

ω1(x1(t)) = 1− 0.5

1 + e−3−x1(t)
, ω2(x1(t)) =

0.5

1 + e−3−x1(t)
,

The computational results are listed in the following table.

where ”—” denotes that the maximum allowable time-delay

does not exist.

TABLE I THE MAXIMUM ALLOWABLE TIME-DELAY FOR

EXAMPLE 1

literature maximum time-delay
[4] —
[9] 0.6547

[10] 1.0
[11] 1.3546

Theorem 1 1.733

Remark 3: From this example, it can be evidently seen that

the stability consition developed in this paper can yield more

satisfactory results than the ones in other literature, this mainly

because the tighter inequality introduced in the Lemma 1 is

employed to derive the stability conditions.

B. Example 2

Consider the TSFMB control system (3) with

A1 =

[−2 0
0 −0.9

]
,A2 =

[−1 0.5
0 −1

]
,A11 =

[−a 0
−1 −1

]
,

A12 =

[−1 0
0.1 −1.5

]
,A21 =

[
0 −1
0 1

]
,A22 =

[
1 0
0 1

]
,

B1 =
[
1 0

]T
,B2 =

[
8 −10 + b

]T
,

ω1(x1(t)) = 1− 0.5

1 + e−3−x1(t)
, ω2(x1(t)) = 1− ω1(x1(t)),

m1(x1(t)) = 0.7− 0.5

1 + e4−x1(t)
, m2(x1(t)) = 1−m1(x1(t)),

where a and b denote constant system parameters.

As Theorem 2 requires:

mj(x1(t))− ρjωj(x1(t)) ≥ 0, 0 < ρj < 1, j = 1, 2 (30)

for all the x(t) and j. By means of Matlab, we can derive the

feasible ranges of ρ1 and ρ2 are:

ρ1 ≤ 0.402, ρ2 ≤ 0.647

And in this example, we choose ρ1 = 0.4, and ρ2 = 0.6.

What’s more, the following table list the maximum allow-

able time-delay obtained through the conditions presented in

Theorem 2 with different fixed a, b, σ.

TABLE II THE MAXIMUM ALLOWABLE TIME-DELAY WITH

t2 = t3 = · · · = t6 = 2

samples of a, b, σ Theorem 2
a = 1, b = 5, σ = 1 0.46

a = −10, b = 5, σ = 1 0.05
a = 5, b = 5, σ = 1 0.26
a = 1, b = 5, σ = 2 0.68
a = 1, b = 5, σ = 5 0.42

a = 1, b = −10, σ = 1 0.46
a = 1, b = 10, σ = 1 0.48

Further, setting a = 1, b = 5, σ = 1, h = 0.25 , t2 =
t3 = · · · = t6 = 2, using the method of Theorem 2, we

can get state feedback gains as: K1 =
[−0.4955 0.2811

]
,

K2 =
[−0.4694 0.2518

]
. And the initial value of the system

state is chosen as x(t) =
[
3 −2

]T
. By means of Matlab, we

can obtain Fig 1, which displays the state response of the



TSFMB control system. The trend of the changes of Fig 1

can prove that the designed fuzzy controller can achieve the

function of stabilizing the system.

Fig. 1. State response of the TSFMB control system

V. CONCLUSION

The paper concerns stability and stabilization analyses prob-

lem of TSFMB system with distributed time-delay. In the light

of Lyapunov theory and one novel integral inequality proposed

by the literature [8], relaxed stability and stabilization con-

ditions have been derived. Moreover, the imperfect premise

matching method is employed in the stabilization analysis,

consequently, more design flexibility and better robustness

can be achieved. Finally, some numerical examples have been

presented to further clarify the edge of the designed conditions.
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