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Abstract—This paper investigates the fuzzy H∞ filter design
issue for nonlinear systems with time-varying delay. In order
to obtain less conservative fuzzy H∞ filter design method, a
novel integral inequality is employed to replace the conventional
Lebniz-Newton formula to analyze the stability conditions of the
filtering error system. Besides, the information of the membership
functions is introduced in the criterion to further relax the
derived results. The proposed delay dependent filter design
method is presented as LMI-based conditions, and corresponding
definite expressions of fuzzy H∞ filter are given as well. Finally,
a simulation example is provided to prove the effectiveness and
superiority of the designed fuzzy H∞ filter.

I. INTRODUCTION

Filtering is playing a critical role in signal processing, and
during last decades, a variety of filters have been developed,
like Kalman filter [1], H2 filter [2], and H∞ filter [3, 4].
Among them, H∞ filter has attracted considerable attention
from researchers, since it can deal with systems with uncer-
tainty, and it has no specific requirement for external noises.

Moreover, time-delay often appears in practical systems,
which can destroy the system performance and even cause
instability of the control system. Therefore, the study of time-
delay systems is of great importance [3–5]. When dealing with
analysis and synthesis problems of nonlinear systems with
time-delay, the T-S fuzzy model[6, 7] is often employed, which
can represent the nonlinear system as the weighted sum of
some local linear models. Motivated by the parallel distribution
compensation (PDC) methodology [8], we assume that the
fuzzy H∞ filter to be designed and the T-S fuzzy model have
the same premise membership functions and the same number
of rules in this paper. Thus, the stability analysis and synthesis
can be facilitated.

As the fuzzy H∞ filter has to guarantee the whole filtering
system is asymptotically stable, the Lyapunov stability theory
[9] is applied, which will make the derived results conser-
vative. To reduce conservatism, researchers have developed
various methods [3, 5, 6, 9]. To mention a few, in [5], a delay-
dependent fuzzy H∞ filter design method was proposed for
T-S fuzzy-model-based system with time-varying delay. How-
ever, in this paper, the Lyapunov-Krasovskii function candidate

was chosen as a single Lyapunov function, to obtain more
relaxed results, the literature [4] adopted a fuzzy Lyapunov
function to analyze the stability condition. In [3], the fuzzy
H∞ filter design approach was improved by estimating the
upper bound of the derivative of Lyapunov function without
ignoring any useful terms. On the basis of [3], literature [6]
proposed a technique to obtain more accurate upper bound of
the derivative of Lyapunov function. However, all the afore-
mentioned literature used the inequalities derived from the
Leibniz-Newton formula [3] to derive stability conditions, just
like in some other literature [10–12]. Though such methods
can solve the fuzzy H∞ filter design problem, the derived
results are conservative and there is little room left to further
reduce the conservatism. Therefore, in this paper, we aim
to propose a new less conservative fuzzy H∞ filter design
method which is not based on the conventional Leibniz-
Newton formula. Besides, to the best of our knowledge, no
existing fuzzy H∞ filter design method has considered the
information of membership functions, which motivate us to
investigate a membership function dependent design method.

To achieve our goal, the fuzzy H∞ filter to be designed
and the T-S fuzzy model will be assumed to have the same
premise membership functions and the same number of fuzzy
rules. To reduce the conservatism of the design method, a
novel integral inequality [13] will be employed to replace the
traditional Leibniz-Newton formula to deal with integral term∫ β
α
ẋT (s)Rẋ(s)ds in stability analysis. Besides, the informa-

tion of the membership functions will be taken into account
in the derived criteria to further relax the derived results.

II. PRELIMINARIES

Consider a nonlinear system involving time-varying delay,
which is described by the following p-rule T-S fuzzy model:

Plant Rule i: IF ψ1(t) isMi
1 and ψ2(t) isMi

2 and . . . and
ψm(t) is Mi

m, THEN

ẋ(t) = Aix(t) +Aτix(t− τ(t)) +Biw(t),

y(t) = Cix(t) + Cτix(t− τ(t) +Diw(t),

z(t) = Eix(t) + Eτix(t− τ(t)),
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x(t) = φ(t), ∀t ∈ [−τ0, 0], (1)

where i = 1, 2, . . . , p. ψα(t)(α = 1, 2, . . . ,m) is the premise
variable. Mi

α is the fuzzy term of rule i which corresponds
to the function ψα. m is a positive integer. And x(t) ∈ Rn
is the system state, z(t) ∈ Rq is the unknown signal to be
estimated, y(t) ∈ Rm is the system output, w(t) ∈ Rp is the
noise signal which is assumed to be arbitrary and satisfies
w(t) ∈ L2 ∈ [0,∞). Ai, Aτi, Bi, Ci, Cτi, Di, Ei, Eτi are
given system matrices. Time delay τ(t) is a continuously
differentiable function, satisfying the conditions:

0 ≤ τ(t) < h, τ̇(t) ≤ ρ. (2)

By fuzzy blending, the system dynamics can be presented as

ẋ(t) =

p∑
i=1

υi(ψ(t))[Aix(t) +Aτix(t− τ(t)) +Biw(t)],

y(t) =

p∑
i=1

υi(ψ(t))(Cix(t) + Cτix(t− τ(t) +Diw(t)),

z(t) =

p∑
i=1

υi(ψ(t))(Eix(t) + Eτix(t− τ(t))).

(3)
where υi(ψ(t)) = Πm

α=1µMi
α

(ψα(t))/
∑p
k=1 Πm

α=1µMk
α

(ψα(t))
is the normalized membership function satisfying:∑p
i=1 υi(ψ(t)) = 1, υi(ψ(t)) > 0; and µMi

α
(ψα(ψ(t))) is

the grade of membership function which corresponds to the
fuzzy term Mi

α.
Motivated by the parallel distribution compensation (PDC)

methodology [8], the fuzzy H∞ filter is assumed to have the
same premise membership functions and the same number of
fuzzy rules as the fuzzy model, which can be presented as:

Filter Rule j: IF ψ1(t) is Mj
1 and ψ2(t) is Mj

2 and . . .
and ψm(t) is Mj

m, THEN

˙̂x(t) = Âj x̂(t) + B̂jy(t),

ẑ(t) = Ĉj x̂(t),
(4)

where j = 1, 2, . . . , p. x̂(t) ∈ Rn and ẑ(t) ∈ Rq are the state
and output of the fuzzy H∞ filter respectively. And Âj , B̂j , Ĉj
are the filter matrices of that will be designed.

Similarly, through fuzzy blending, the fuzzy H∞ filter to
be designed can be presented as

˙̂x(t) =

p∑
j=1

υj(ψ(t))(Âj x̂(t) + B̂jy(t)),

ẑ(t) =

p∑
j=1

υj(ψ(t))Ĉj x̂(t).

(5)

According to (3) and (5), and define the augmented state
vector as ζ(t) = [xT (t), x̂(t)]T and e(t) = z(t) − ẑ(t), we
can obtain the H∞ filtering system as follows

ζ̇(t) = Ā(t)ζ(t) + Āτ (t)ζ(t− τ(t)) + B̄(t)w(t)),

e(t) = Ē(t)ζ(t) + Ēτ (t)ζ(t− τ(t))),
(6)

where ζ(0) = [φ(t), x̂0] for ∀t ∈ [−τ0, 0], and

Ā(t) =

p∑
i=1

p∑
j=1

υi(ψ(t))υj(ψ(t))

[
Ai 0

B̂jCi Âj

]

Āτ (t) =

p∑
i=1

p∑
j=1

υi(ψ(t))υj(ψ(t))

[
Aτi 0

B̂jCτi 0

]

B̄(t) =

p∑
i=1

p∑
j=1

υi(ψ(t))υj(ψ(t))

[
Bi
B̂jDi

]
,

Ē(t) =

p∑
i=1

p∑
j=1

υi(ψ(t))υj(ψ(t))[Ei −Ĉj ],

Ēτ (t) =

p∑
i=1

p∑
j=1

υi(ψ(t))υj(ψ(t))[Eτi 0].

Ergo, the fuzzy H∞ filter design problem that will be
resolved in this paper can be summarized as follows:

Fuzzy H∞ filter issue: Design a fuzzy filter in the form of
(5) satisfying the following two conditions:

(1) If w(t) = 0, the filtering system (6) is asymptotically
stable;

(2) For a given scalar γ > 0, if ζ(t) ≡ 0 for t ∈ [−h, 0], the
following H∞ performance can be satisfied for all the T > 0
and w(t) ∈ L2[0,∞).∫ T

0

‖e(t)‖2dt ≤ γ2
∫ T

0

‖w(t)‖2dt. (7)

Besides, the following lemma is useful for the later deduc-
tion of the main results.

Lemma 1 [13]: It is assumed that x is a differentiable
function: [α, β] → Rn. For N1, N2, N3 ∈ R4n×n, and
R ∈ Rn×n > 0, the following inequality holds:

−
∫ β

α

ẋT (s)Rẋ(s)ds ≤ ξTΩξ, (8)

where

Ω = τ(N1R
−1NT

1 +
1

3
N2R

−1NT
2 +

1

5
N3R

−1NT
3 )

+ Sym{N1∆1 +N2∆2 +N3∆3}, τ = β − α,
ei =

[
0n×(i−1)n In 0n×(4−i)n

]
, Π1 = e1 − e2,

Π2 = e1 + e2 − 2e3, Π3 = e1 − e2 − 6e3 + 6e4,

ξ = [xT (β) xT (α) 1
d

∫ β
α
xT (s)ds 2

d2

∫ β
α

∫ s
α
xT (u)duds]

T .

III. MAIN RESULTS

First, a sufficient stability condition for the filtering system
(6) will be derived.

Lemma 2: Given constants h, ρ and γ > 0, the system
(6) is asymptotically stable with w(t) ≡ 0, and satisfies
the prescribed H∞ performance requirement (7), if there
exist matrices P = PT ∈ R2n×2n, Y = Y T ∈ R2n×2n,
Z = ZT ∈ R2n×2n, such that the following inequality is
feasible.

Φ(t) =

Ξ(t)
√
hΓT1 P ΓT2 (t)

∗ −PZ−1P 0
∗ ∗ −1

 < 0, (9)
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where

Ξ(t) = Λ + Ξ3(t),

Λ =
3

h


−3Z Z 12Z −10Z 0
∗ −3Z −8Z 10Z 0
∗ ∗ −64Z 60Z 0
∗ ∗ ∗ −60Z 0
∗ ∗ ∗ ∗ 0

 ,

Ξ3(t) =


PĀ(t) + ĀT (t)P + Y PĀτ (t) 0 0 PB̄(t)

∗ −Y 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ −γ2

 ,
Γ1(t) =

[
Ā(t) Āτ (t) 0 0 B̄(t)

]
,

Γ2(t) =
[
Ē(t) Ēτ (t) 0 0

]
.

Proof: Constructing the Lyapunov-Krasovskii function as
follows:

V (t) =ζT (t)Pζ(t) +

∫ t

t−τ(t)
ζT (s)Y ζ(s)ds

+

∫ 0

−h

∫ t

t+θ

ζ̇(s)TZζ̇(s)dsdθ.

(10)

Then the derivative of V (t) can be obtained as

V̇ (t) =2ζT (t)P ζ̇(t)− (1− τ̇(t))ζT (t− τ(t))Y ζ(t− τ(t))

+ hζ̇(t)TZζ̇(t)−
∫ t

t−h
ζ̇(s)TZζ̇(s)ds.

(11)
Applying Lemma 1 to the last term in the right hand side of
(11), we can obtain

−
∫ t

t−h
ζ̇T (s)Zζ̇(s)ds < −

∫ t

t−τ(t)
ζ̇T (s)Zζ̇(s)ds

≤ µT (t)

[
τ(t)M1Z

−1MT
1 +

τ(t)

3
M2Z

−1MT
2

+
τ(t)

5
M3Z

−1MT
3 + Sym{M1Π1 +M2Π2 +M3Π3}

]
µ(t)

< µT (t)

[
hM1Z

−1MT
1 +

h

3
M2Z

−1MT
2 +

h

5
M3Z

−1MT
3

+ Sym{M1Π1 +M2Π2 +M3Π3}
]
µ(t)

= µT (t) (Ξ1 + Ξ2)µ(t),
(12)

where

µ(t) =

[ζT (t) ζT (t− τ(t)) 1
τ(t)

∫ t
t−τ(t) ζ

T (s)ds θ1 w(t)]T ,

θ1 =
2

τ2(t)

∫ t

t−τ(t)

∫ s

t−τ(t)
ζT (u)duds,

Ξ1 = hM1Z
−1MT

1 +
h

3
M2Z

−1MT
2 +

h

5
M3Z

−1MT
3 ,

Ξ2 = Sym{M1Π1 +M2Π2 +M3Π3},
ei =

[
02n×(i−1)2n I2n 02n×(5−i)2n

]
.

So according to (2) and (6), we can acquire

V̇ (t) < 2ζT (t)P [Ā(t)ζ(t) + Āτ (t)ζ(t− τ(t)) + B̄(t)w(t)]

− (1− d)ζT (t− τ(t))Y ζ(t− τ(t))

+ hζ̇(t)TZζ̇(t) + µT (t)(Ξ1 + Ξ2)µ(t).
(13)

After some algebra, (13) can be expressed as the following
compact form:

V̇ (t) + eT (t)e(t)− γ2wT (t)w(t) < µT (t)(Ξ1 + Ξ2

+ Ξ3(t) + hΓT1 (t)ZΓ1(t) + ΓT2 (t)Γ2(t))µ(t),
(14)

where Ξ3(t), Γ1(t), Γ2(t) are defined in (9).
So if

Ξ1 + Ξ2 + Ξ3(t) + hΓT1 ZΓ1(t) + ΓT2 Γ2(t) < 0, (15)

there will have

V̇ (t) + eT (t)e(t)− γ2wT (t)w(t) < 0, (16)

which can be converted to∫ L

0

(‖e(t)‖2−γ2‖w(t)‖2)dt+V (t)|t=L−V (t)|t=0 ≤ 0, (17)

as V (t)|t=0 = 0 and V (t)|t=L ≥ 0. So we have∫ L

0

‖e(t)‖2dt ≤
∫ L

0

γ2‖w(t)‖2)dt, (18)

for all L > 0, and any nonzero w(t) ∈ L2[0,∞), which means
the H∞ performance requirement is satisfied.

Besides, to reduce computational complexity, we will elim-
inate free matrices by assuming

M1 =
1

h
[−Z Z 0 0 0]

T
,

M2 =
3

h
[−Z − Z 2Z 0 0]

T
,

M3 =
5

h
[−Z Z 6Z − 6Z 0]

T
.

(19)

Then Ξ1 + Ξ2 can be written as Λ, where Λ is defined in (9).
Applying the Schur Complement lemma, we can transfer (15)
to (9).

Moreover, from inequalities (14) and (15), we can get
V̇ (t) < 0 when w(t) ≡ 0, which means the filtering system
(6) is aymptotically stable. Thus, the proof of Lemma 2 is
completed.

Remark 1: It can be seen from the proof process that a novel
integral inequality is applied to deal with the integral term
−
∫ t
t−h ζ̇

T (s)Zζ̇(s)ds, which is tighter than other existing
ones. Therefore, the derived results can be less conservative.
Besides, the stability condition obtained has a simpler form,
which means the proposed method can be more practical.
Usually, the Leibniz-Newton formula [10] is used to do this
work, the introduction of the novel integral inequality provides
another approach to further reduce conservatism, and improve
the performance of the system.

From the discussion above, we have got the sufficient
condition for the existence of fuzzy H∞ filter. Next we will
focus on the fuzzy H∞ filter design for system (3).
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Theorem 1: Given constants h, ρ, ω and γ > 0, the system
(6) is asymptotically stable with w(t) ≡ 0, and satisfies the
prescribed H∞ performance requirement (7), if there exist
matrices

P̃ = P̃T =

[
P11 P̃22

∗ P̃22

]
, (20)

Ỹ = Ỹ T ∈ R2n×2n, Z̃ = Z̃T ∈ R2n×2n, such that the
following LMIs (21) are feasible.

Υij + Υji < 0, i ≤ j, i, j = 1, 2, ..., p, (21)

where

Υij =

Ξ̃ij
√
hΓ̃T1ij Γ̃T2ij

∗ −2ωP̃ + ω2Z̃ 0
∗ ∗ −1

 ,
Ξ̃ij = Λ̃ + Ξ̃3ij ,

Λ̃ =
3

h


−3Z̃ Z̃ 12Z̃ −10Z̃ 0

∗ −3Z̃ −8Z̃ 10Z̃ 0

∗ ∗ −64Z̃ 60Z̃ 0

∗ ∗ ∗ −60Z̃ 0
∗ ∗ ∗ ∗ 0

 ,

Ξ̃3ij =


Sym{λ1ij}+ Ỹ λ2ij 0 0 λ3ij

∗ −Ỹ 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ −γ2

 ,
Γ̃1ij =

[
λ1ij λ2ij 0 0 λ3ij

]
,

Γ̃2ij =
[[
Ei −Cj

] [
Edi 0

]
0 0 0

]
,

λ1ij =

[
P11Ai + BjCi Aj

P̃22Ai + BjCi Aj

]
,

λ2ij =

[
P11Adi + BjCdi 0

P̃22Adi + BjCdi 0

]
, λ3ij =

[
P11Bi + BjDi

P̃22Bi + BjDi

]
,

and in this case, the parameters of the fuzzy H∞ filter can be
presented as

Â′j = P̃−122 Aj , B̂′j = P̃−122 Bj , Ĉ ′j = Cj . (22)

Proof: For arbitrary constant ω, the following inequality
holds:

(ωZ − P )Z−1(ωZ − P ) ≥ 0, (23)

which can also be presented as

−PZ−1P ≤ −2ωP + ω2Z. (24)

As a result, if the following inequality (25) holds, the inequal-
ity (9) is true.Ξ(t)

√
hΓT1 P ΓT2

∗ −2ωP + ω2Z 0
∗ ∗ −1

 < 0. (25)

Then introduce a partition as

P =

[
P11 P12

∗ P22

]
, (26)

where P11, P12 are assumed to satisfy: P11 = PT11, P22 = PT22,
and P12 is invertible by invoking small perturbation if it is
necessary.

Let

F =

[
I 0

∗ P−T22 PT12

]
, (27)

and G = diag{F, F, F, F, 1}. Using diag{G,F, 1} and its
transpose to post multiply and pre multiply (25), then we can
get

Φ̃(t) =

p∑
i=1

p∑
j=1

υi(ψ(t))υj(ψ(t))Υij < 0, (28)

with the changes of variables as

P̃22 = P12P
−1
22 P

T
12, P̃ = FTPF =

[
P11 P̃22

∗ P̃22

]
,

Ỹ = FTY F, Z̃ = FTZF, Aj = P12ÂjP
−T
22 PT12,

Bj = P12B̂j , Cj = ĈjP
−T
22 PT12,

(29)
where Υij is defined in (21).

From (29), we can obtain:

Âj = P−112 AjP
−T
12 PT22, B̂j = P−112 Bj ,

Ĉj = CjP
−T
12 PT22.

(30)

As P̃22 = P12P
−1
22 P

T
12, through an equivalent transformation

P−T12 P22x̂(t), we can obtain an admissible fuzzy H∞ realiza-
tion as:

Â′j = P−T12 P22(P−112 AjP
−T
12 PT22)P−T22 PT12 = P̃−122 Aj ,

B̂′j = P−T12 P22(P−112 Bj) = P̃−122 Bj ,

Ĉ ′j = (CjP
−T
12 PT22)P−T22 PT12 = Cj .

(31)

Besides, inequality (28) can also be denoted as

Φ̃(t) =

p∑
i=1

p∑
j=1

υi(ψ(t))υj(ψ(t))Υij

=

p∑
i=1

υi(ψ(t))2Υii +

p∑
i=1

p∑
i<j

υi(ψ(t))υj(ψ(t))(Υij + Υji),

(32)
where Υij is defined in (21).

Therefore, if (21) holds, we can derive Φ̃(t) < 0, which
implies the filtering system (6) is asymptotically stable, and it
can satisfy the H∞ performance condition (7) as well. Thus,
we finish the proof of Theorem 1.

Theorem 1 has provided a feasible method to design fuzzy
H∞ filter for system (3). However, as some inequality con-
straints is expanded in the deduction process, the derived result
is conservative. To reduce conservatism of the filter design
method, we will introduce the information of the membership
functions in the following criterion.
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Theorem 2: Given constants h, ρ, ω and γ > 0, the system
(6) is asymptotically stable with w(t) ≡ 0, and satisfies the
prescribed H∞ performance requirement (7), if there exist
matrices

P̃ = P̃T =

[
P11 P̃22

∗ P̃22

]
, (33)

Ỹi = Ỹ Ti ∈ R2n×2n, Z̃i = Z̃Ti ∈ R2n×2n, Jij = JTij ∈
R(10n+2)×(10n+2), Kij = KT

ij ∈ R(10n+2)×(10n+2), such that
the following LMIs (34) are feasible.

Ωij + Ωji < 0, i ≤ j, i, j = 1, 2, ..., p, (34)

where

Ωij = Υij − Jij +Kij +

p∑
a=1

p∑
b=1

m̄abJab −
p∑
k=1

p∑
l=1

m̄klKkl,

Υij is defined in (21), and in this case, the parameters of the
fuzzy H∞ filter can be expressed as

Â′j = P̃−122 Aj , B̂′j = P̃−122 Bj , Ĉ ′j = Cj . (35)

Proof: In this part, we denote υi(ψ(t))υj(ψ(t)) as mij , re-
spectively to decrease the computational complexity. Besides,
it is assumed that mij and m̄ij represent the lower bound and
upper bound of mij .

From the discussion above, we have

V̇ (t) + eT (t)e(t)− γ2wT (t)w(t) < µT (t)Φ̃(t)µ(t). (36)

Through a straightforward computation, we can derive

µT (t)Φ̃(t)µ(t) =

p∑
i=1

p∑
j=1

mijµ
T (t)Υijµ(t)

≤
p∑
i=1

p∑
j=1

mijµ
T (t)Υijµ(t) +

p∑
i=1

p∑
j=1

(m̄ij

−mij)µ
T (t)Jijµ(t) +

p∑
i=1

p∑
j=1

(mij −mij)µ
T (t)Kijµ(t)

=

p∑
i=1

p∑
j=1

mijµ
T (t)(Υij − Jij +Kij)µ(t)

+

p∑
i=1

p∑
j=1

m̄ijµ
T (t)Jijµ(t)−

p∑
i=1

p∑
j=1

mijµ
T (t)Kijµ(t)

=

p∑
i=1

p∑
j=1

mijµ
T (t)(Υij − Jij +Kij +

p∑
a=1

p∑
b=1

m̄abJab

−
p∑
k=1

p∑
l=1

m̄klKkl)µ(t) =

p∑
i=1

p∑
j=1

mijµ
T (t)Ωijµ(t),

(37)
where Ωij is defined in (34).

Since
p∑
i=1

p∑
j=1

mijµ
T (t)Ωijµ(t)

=

p∑
i=1

miiµ
T (t)Ωiiµ(t) +

p∑
i=1

p∑
i<j

mijµ
T (t)(Ωij + Ωji)µ(t).

(38)
Consequently, if (34) holds, we can derive that the following
inequality holds

V̇ (t) + eT (t)e(t)− γ2wT (t)w(t) < 0, (39)

which means that the filtering system (6) is asymptotically
stable and the H∞ performance condition (7) can be satisfied,
thus, we accomplish the proof of Theorem 2.

Remark 2: In Theorem 2, the information of the mem-
bership functions is considered in the criterion, consequently,
less conservative result can be obtained. However, compared
with Theorem 1, the criterion presented in Theorem 2 is more
complex, which implies that it will be more difficult to realize
in engineering applications. Therefore, both Theorem 1 and
Theorem 2 are meaningful.

IV. NUMERICAL EXAMPLE

In this section, we will use one numerical example to
illustrate the effectiveness of the proposed approach.

A. Example 1

Consider the example given in [4], which can be presented
as (1) with

A1 =

[
−2.1 0.1

1 −2

]
, A2 =

[
−1.9 0
−0.2 −1.1

]
,

Aτ1 =

[
−1.1 0.1
−0.8 −0.9

]
, Aτ2 =

[
−0.9 0
−1.1 −1.2

]
, B1 =

[
1
−0.2

]
,

B2 =

[
0.3
0.1

]
, C1 =

[
1 0

]
, C2 =

[
0.5 −0.6

]
,

Cτ1 =
[
−0.8 0.6

]
, Cτ2 =

[
−0.2 1

]
, D1 = 0.3,

D2 = −0.6, E1 =
[

1 −0.5
]
, E2 =

[
−0.2 0.3

]
,

Eτ1 =
[

0.1 0
]
, Eτ2 =

[
0 0.2

]
.

and the membership functions are defined as

υ1(x1(t)) = 1− 0.5

1 + e−3−x1(t)
, υ2(x1(t)) = 1− ω1(x1(t)).

Let (ρ, ω, h) = (0.2, 2, 0.5), using the criterion described
in theorem 2, we can get the minimum attenuation level γ =
0.17, and according to (34) and (35), we can obtain a group
of feasible filter parameters as follows

Â′1 =

[
−5.4988 0.7614
0.6899 −1.6958

]
, Â′2 =

[
−0.0367 −8.6368
−3.3984 −10.8002

]
,

B̂′1 =

[
−3.3721
0.1692

]
, B̂′2 =

[
−2.1468
0.0148

]
,

Ĉ ′1 =
[
−1.0777 0.1460

]
, Ĉ ′2 =

[
−0.5006 0.0419

]
.
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Note that different (h, ω) can yield different value of
minimum attenuation level γ, and to fully illustrate the su-
periority of the proposed method, we will use Theorem 2
in this paper and other recently developed methods to find
minimum attenuation level γ. All the computational result are
summarized in Table I-III.

TABLE I
THE MINIMUM ATTENUATION LEVEL γ FOR ω = 2

method h = 0.5 h = 0.6 h = 0.8 h = 1
[4] 0.25 0.25 0.27 0.29
[6] 0.24 0.25 0.25 0.26
[7] 0.23 0.24 0.25 0.25

Th. 2 0.17 0.19 0.21 0.24

TABLE II
THE MINIMUM ATTENUATION LEVEL γ FOR ω = 5

method h = 0.5 h = 0.6 h = 0.8 h = 1
[4] 0.24 0.24 0.25 0.26
[6] 0.24 0.24 0.25 0.26
[7] 0.23 0.24 0.24 0.25

Th. 2 0.18 0.20 0.21 0.22

TABLE III
THE MINIMUM ATTENUATION LEVEL γ FOR ω = 20

method h = 0.5 h = 0.6 h = 0.8 h = 1
[4] 0.26 0.28 0.44 −−
[6] 0.25 0.26 0.35 0.45
[7] 0.23 0.24 0.25 0.25

Th. 2 0.23 0.23 0.24 0.25

where −− denotes that the minimum attenuation level γ
does not exist.

From Table I-III, we can see that the designed approach in
this paper can produce smaller value of minimum attenuation
level γ than those in [3–6], which implies the proposed method
in this paper is less conservative than those in [3–6].

Remark 3: There are two reasons for the less conservative
results. First, a novel integral inequality (8) is introduced,
which is tighter than the conventional integral inequalities
derived from the Leibniz-Newton formula, and less conserva-
tive stability conditions can be derived. Second, a membership
functions dependent technique is used, which can help further
relax the results.

V. CONCLUSIONS

This paper investigates the fuzzy H∞ filter design issue
for nonlinear systems with time-varying delay. The T-S fuzzy
model has been used to represent the dynamics of the nonlinear
time-delay system. And a novel integral inequality which is
tighter than the inequalities derived from the Leibniz-Newton
formula has been applied in the deduction process. Motivated
by the PDC methodology, the fuzzy filter in this paper has
been allowed to have the same membership functions as the
fuzzy model. Besides, the information about the membership
functions has been introduced to reduce the conservatism. And

in the last, a simulation example has been given to illustrate
the effectiveness and the superiority of the proposed criteria.
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