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ABSTRACT

We study the distributed TD(0) with local state (Algorithm 2 in Liu and Olshevsky (2021)) and
perform corresponding numerical experiments. The goal of experiments is to illustrate Theorem
2 in Liu and Olshevsky (2021), which shows a linear time speedup phenomenon. In particular, to
the extent that the variance of the temporal difference error affects the performance of TD(0), the
performance of distributed TD(0) with local state is a factor of N times better than the performance
of regular TD(0), where N is the number of agents. We provide the results of numerical experiments
on classic control problems Ma et al. (2020, 2021) in the OpenAI Gym and a grid world Markov
Decision Process (MDP).

1 Distributed TD(0) with Local State

In this section, we first provide notation and standard background information on MDP and temporal difference learning
with linear function approximation; then describe formally the distributed TD(0) with local state algorithm we analyzed
and corresponding convergence results.

1.1 Markov Decision Processes

A discounted reward MDP is described by a 5-tuple (S,A,P,r,γ), where S = {1,2, · · · ,n} is a finite state space,
A is a finite action space, P(s′|s,a) : S ×A×S → [0,1] is transition probability from s to s′ determined by a,
r(s,a,s′) : S ×A×S → R are deterministic rewards and γ ∈ (0,1) is the discount factor.

Let µ denote a fixed policy that maps a state s ∈ S to a probability distribution µ(s, ·) over the action space A, so that
∑a∈A µ(s,a) = 1. Fixing the policy µ induces a probability transition matrix between states:

Pµ(s,s′) = ∑
a∈A

µ(s,a)P(s′|s,a).

We will use rt+1 = r(st ,at ,st+1) to denote the instantaneous reward at time t, where st , at are the state and action taken
at step t. The value function of µ , denoted by V µ : S → R is defined as

V µ(s) = Eµ,s

[
∞

∑
t=0

γ
trt+1

]
, (1)

where Eµ,s [·] indicates that s is the initial state and the actions are chosen according to the policy µ . In the following,
we will treat V µ as a vector in Rn and treat Pµ as a matrix in Rn×n.

Next, we state a standard assumptions on the underlying Markov chain.
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Assumption 1. The Markov chain with transition matrix Pµ is irreducible and aperiodic.

A consequence of Assumption 1 is that there exists a unique stationary distribution π = (π1,π2, · · · ,πn), a row vector
whose entries are positive and sum to 1. This stationary distribution satisfies πT Pµ = πT and πs′ = limt→∞(Pµ)t(s,s′)
for any two states s,s′ ∈ S .

We next provide definitions of two norms. For any two vectors V,V ′ ∈ Rn, we define an inner product as〈
V,V ′〉

D =V T DV ′ = ∑
s∈S

πsV (s)V ′(s),

and the associated norm as
∥V∥2

D =V T DV = ∑
s∈S

πsV (s)2.

Finally, we introduce the definition of Dirichlet seminorm:

∥V∥2
Dir =

1
2 ∑

s,s′∈S
πsPµ(s,s′)(V (s′)−V (s))2.

1.2 Temporal Difference Learning

If the number of states is very large, it will be computationally expensive to evaluate the value function V µ of a policy.
Therefore, the classical TD algorithm uses low dimensional approximation V µ

θ
. For brevity, we will omit the superscript

µ throughout from now on.

Here we study the simplest case where Vθ is a linear function of θ :

Vθ (s) =
K

∑
l=1

θlφl(s) ∀s ∈ S, (2)

where φl = (φl(1), · · · ,φl(n))T ∈ Rn for l ∈ [K] are K given feature vectors. Together, all K feature vectors forms a
n×K matrix Φ = (φ1, · · · ,φK). For s ∈ S, let φ(s) = (φ1(s), · · · ,φK(s))T ∈ RK denote the s-th row of matrix Φ, a
vector that collects the features of state s. Then, Eq. (2) can be written in a compact form Vθ (s) = θ T φ(s).

The method maintains a parameter θ(t) which is updated ate very step to improve the approximation. Supposing that
we observe a sequence of states {s(t)}t∈N0 , then the classical TD(0) algorithm updates as:

θ(t +1) = θ(t)+αtδ (t)φ(s(t)), (3)

where {αt}t∈N0 is the sequence of step-sizes, and letting s′(t) denote the next state after s(t), the quantity δ (t) is the
temporal difference error

δ (t) = r(t)+ γθ
T (t)φ(s′(t))−θ

T (t)φ(s(t)). (4)

A common assumption on feature vectors is that features are linearly independent and uniformly bounded, which is
formally given next.
Assumption 2. The matrix Φ has full column rank, i.e., the feature vectors {φ1, . . . ,φK} are linearly independent.
Additionally, it satisfies that ∥φ(s)∥2

2 ≤ 1 for s ∈ S.

Under Assumption 1 and 2, we introduce the steady-state feature covariance matrix ΦT DΦ and let ω > 0 is a lower
bound of the minimum eigenvalue of matrix ΦT DΦ.

1.3 Distributed TD(0) with Local State and Its Convergence Results

We study the distributed model Ma and Olshevsky (2020) with local state, which is introduced in Liu and Olshevsky
(2021). In the distributed model with local state, each agent has its own independently evolving copy of the same MDP.
In particular, let V = {1, . . . ,N} denote the set of agents and each agent has the same 5-tuple (S,A,P,r,γ). At time t,
agent v will be in a state sv(t); it will apply action av(t) ∈A with probability µ(sv(t),av(t)); then agent v moves to state
s′v(t) with probability P(s′v(t)|sv(t),av(t)), with the transitions of all agents being independent of each other; finally
agent v gets a reward rv(t) = r(sv(t),av(t),s′v(t)). Note that, although the rewards obtained by different agents can be
different, the reward function r(s,a,s′) is identical across agents.

We use the notation θ ∗
lc to be the fixed point of TD(0) on the MDP (S,A,P,r,γ). Then, the distributed TD(0) in this

setting, which is also called distributed TD(0) with local state, are formally given in the Algorithm 1.

2
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Algorithm 1 TD(0) with Local State

1: For v ∈ V , initialize θv(0), sv(0)
2: for t = 0 to T do
3: for v ∈ V do
4: Observe a tuple (sv(t),s′v(t),rv(t)).
5: Compute temporal difference:

δv(t) = rv(t)−
(
φ(sv(t))− γφ(s′v(t))

)T
θv(t).

6: Execute local TD update:
θv(t +1) = θv(t)+αtδv(t)φv(s(t)).

7: Update running average:

θ̂v(t +1) =
(

1− 1
t +2

)
θ̂v(t)+

1
t +2

θv(t +1).

8: end for
9: end for

10: Return θ̂(T ) and θ̄(T ):

θ̂(T ) =
1
N ∑

v∈V
θ̂v(T ), θ̄(T ) =

1
N ∑

v∈V
θv(T ).

Before stating convergence results, we first introduce some notation. For the local model, the variance of the temporal
difference error is identical to the variance defined in the centralized model:

σ
2 = E

[(
r(s,a,s′)−

(
φ(s)− γφ(s′)

)T
θ
∗
lc

)2
]

In the multi-agent case, we simply take the maximum of initial condition over all the agents to define:

R̂0 = max
v∈V

E
[
∥θv(0)−θ

∗
lc∥2

2

]
The convergence result proved in Liu and Olshevsky (2021) is given in the subsequent theorem.

Theorem 1. [Theorem 2 in Liu and Olshevsky (2021)] Suppose Assumptions 1-2 hold. Suppose further that {θv(t)}v∈V
and {θ̂v(t)}v∈V are generated by Algorithm 1 in the local state model. Then,

(a) For any constant step-size sequence α0 = · · ·= αT = α ≤ (1− γ)/8, we have

E
[
(1− γ)

∥∥∥Vθ∗
lc
−V

θ̂(T )

∥∥∥2

D
+ γ

∥∥∥Vθ∗
lc
−V

θ̂(T )

∥∥∥2

Dir

]
≤ 1

T

(
1

2α
E
[
||θ̄(0)−θ

∗
lc||22

]
+

4R̂0

1− γ

)
+

ασ2

N
+

8α2σ2

1− γ
.

(b) For any T ≥ 64
(1−γ)2 and constant step-size sequence α0 = · · ·= αT = 1√

T
, we have

E
[
(1− γ)

∥∥∥Vθ∗
lc
−V

θ̂(T )

∥∥∥2

D
+ γ

∥∥∥Vθ∗
lc
−V

θ̂(T )

∥∥∥2

Dir

]
≤ 1

2
√

T

(
E
[∥∥θ̄(0)−θ

∗
lc
∥∥2

2

]
+

2σ2

N

)
+

1
T

(
4R̂0 +8σ2

1− γ

)
.

(c) For the decaying step-size sequence αt =
α

t+τ
with α = 2

(1−γ)ω and τ = 16
(1−γ)2ω

. Then,

E
[∥∥θ̄(t +1)−θ

∗
lc
∥∥2

2

]
≤ 2α2σ2/N

t + τ
+

8α2ζ̂

(t + τ)2 +
(τ −1)4E

[∥∥θ̄(0)−θ ∗
lc

∥∥2
2

]
(t + τ)4 ,

where ζ̂ = max
{

2α2σ2,τR̂0
}

.

To parse Theorem 1, note that all the terms in brown are “negligible” in a limiting sense. Indeed, in part (a), the first
term scales as O(1/T ) and consequently goes to zero as T → ∞ (whereas the remaining terms do not). In parts (b) and
(c), the terms in brown go to zero at an asymptotically faster rate compared to the dominant term (i.e., as 1/T vs the

3
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dominant 1/
√

T term in part(b) and as 1/t2,1/t4 compared to the dominant 1/t in part (c)). Finally, the last term in part
(a) scales as O(α2) and will be negligible compared to the term preceding it, which scales as O(α), when α is small.

Moreover, among the non-negligible terms, whenever σ2 appears, it is divided by N; this is highlighted in blue. We
refer to this as the linear time speedup phenomenon.

To summarize, parts (b) and (c) show that, when the number of iterations is large enough, we can divide the variance
term by N as a consequence of the parallelism among N agents. Part (a) shows that, when the number of iterations is
large enough and the step-size is small enough, the size of the final error will be divided by N.

2 Experiments on Open AI Gym

In this section, we apply Algorithm 1 on Mountain Car and Cartpole in OpenAI Gym to show the linear time speedup
phenomenon. We use TD(0) as baseline to compare with. We will introduce the feature we use, tile coding and the
results for both situations.

2.1 Tile Coding

We are using tile coding Sutton and Barto (2018) as our feature for linear approximation. Tile code is a method for
coarse coding. In tile coding the receptive fields of the features are grouped into exhaustive partitions of input space.
Each such partition is called a tiling, and each element of the partition is called a tile. Each tile is a the receptive field
for one binary feature.

2.2 MountainCar Setup

The goal for MountainCar problem is to find a policy to let the car reach the flag on the mountain, namely reach position
at 0.5 in this problem. The observation space is a 2-dim continuous space, each represents car position and car velocity
respectively. There are 3 actions, accelerate to the left, do not accelerate and accelerate to the right. The reward is 0 if
the agent reaches the flag (position = 0.5) and the reward is −1 if the agent not reaches the flag (position = 0.5). For
feature selection, we use 5 tilings each tile contain a 7×7 grids. Then, the feature dimension is 5×7×7. The state
space range is given from the definition of the problem. The car position is in the range [−1.2,0.6] and car velocity is
in the range [−0.07,0.07]. We fix the policy as uniform random policy selecting from the 3 possible actions. We only
test the i.i.d. case described by the theorem, where at each iteration we get a random initialization of states in the given
state space range.

2.3 CartPole Setup

The goal for CartPole problem is to find a policy to let the Pole maintain not falling as long as possible. The observation
space is a 4-dim continuous space, each represents cart position, cart velocity respectively, pole angle and pole angle
velocity. There are 2 actions, push cart to the left and push cart the right. The reward is 1 if the pole not falling. For
feature selection, we use 5 tilings each tile contain a 7×7×7×7 grids. Then, the feature dimension is 5×7×7×7×7.
The state space range is given from the definition of the problem. The cart position is in the range [−1.2,0.6] and car
velocity is in the range [−0.07,0.07]. We fix the policy as uniform random policy selecting from the 3 possible actions.
We only test the i.i.d. case described by the theorem, where at each iteration we get a random initialization of states in
the given state space range.

2.4 Results

We have done experiments based on several metrics. We mainly use the metric
∥∥θ̄(t +1)− θ̄(t)

∥∥2
2 and

∥∥∥ θ̄(t+1)−θ̄(t)
αt

∥∥∥2

2
.

They are the same for the constant step-size αt , except the different scale. Therefore, we only show results of∥∥∥ θ̄(t+1)−θ̄(t)
αt

∥∥∥2

2
for constant step-size. They are different for the decaying step-size αt and we will show both in that

case.

Following Eq.(32) in Liu and Olshevsky (2021), we have∥∥∥∥ θ̄(t +1)− θ̄(t)
αt

∥∥∥∥2

2
=

∥∥∥∥∥ 1
N ∑

v∈V
δv(t)φ (sv(t))

∥∥∥∥∥
2

2

≤ 2σ2

N
+

8
N ∑

v∈V
E
[∥∥∥Vθv(t)−Vθ∗

lc

∥∥∥2

D

]
. (5)

4
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Then, the upper bounds of both metrics do not converge to zero for constant step-size, while the upper bound of∥∥θ̄(t +1)− θ̄(t)
∥∥2

2 converges to zero for decaying step-size when t goes to infinity.

2.4.1 Constant Step-size with i.i.d Observation

Figure 1 shows that, with constant step-size αt = 0.01, MountainCar and CartPole both get benefits from parallelism,
although it is not a linear time speedup. It is because that only the upper bound has a linear time speedup following
Eq.(5). It can be observed that, it is a significant improvement if we use 10 agents instead of one agent. However, it
only makes small progress if we use 100 agents instead of 10 agents.

(a) (b)

Figure 1: CartPole and Mountain car with αt = 0.01, γ = 0.8. (a) CartPole, (b) MountainCar

The performance of different discount factor is of interest. Figure 2 shows CartPole results of different value of γ with
constant step-size αt = 0.01. Regardless what value of γ we use, the algorithm accelerate when enlarging the number
of agents. We can also see that the speed up is more obvious when γ is not very close to 1.

2.4.2 Decaying Step-size with i.i.d Observation

Figure 3 shows the
∥∥∥ θ̄(t+1)−θ̄(t)

αt

∥∥∥2

2
with decaying step-size. Figure 4 shows the

∥∥θ̄(t +1)− θ̄(t)
∥∥2

2 with decaying

step-size. We can see both 1
t and 1√

t cases are converging more quickly to zero as expected. However, the improvement
got by parallelism with decaying step-size is smaller than the improvement with the constant step-size.

2.5 More Discussions

One thing we notice later is that in the code, the default initialization range of feature is smaller than the possible range
in OpenAI gym. To generate i.i.d. observations, we reset the environment at each step. This causes we only update a
small number of dimension in the parameter θ . We then modified the initialization range of feature to its largest range
getting a result like in Figure 5 (a), the TD-update is much more flat. Figure 5 (b) shows the 1 agent case in 10000
iterations. It indeed converges but much slower.

5
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(a) (b)

(c) (d)

Figure 2: Mountain car with different γ . (a) γ = 0.5, (b) γ = 0.8, (c) γ = 0.9, (d) γ = 0.99

(a) (b)

Figure 3: Mountain car with decaying step-size and discount factor γ = 0.8. We are using the metric
∥∥∥ θ̄(t+1)−θ̄(t)

αt

∥∥∥2

2
(a)

αt =
1
t , (b) αt =

1√
t

6
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(a) (b)

Figure 4: Mountain car with decaying step-size and discount factor γ = 0.8. We are using the metric
∥∥θ̄(t +1)− θ̄(t)

∥∥2
2

(a) αt =
1
t , (b) αt =

1√
t

(a) (b)

Figure 5: Mountain car with decaying step-size and discount factor γ = 0.8. We are using the metric
∥∥θ̄(t +1)− θ̄(t)

∥∥2
2

with αt =
1
t . The initialization range of feature is set to the largest possible range. (a) using different number of agents

for 1000 iterations. (b) using 1 agent for 10000 iterations.

7
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3 Experiments on a Grid World MDP

To further verify the effectiveness of Algorithm 1, we apply Algorithm 1 on a simple grid-world experiment. We
consider a 4×4 grid, where the non-terminal states are S = {1,2, . . . ,15}, the terminal state is the upper-left grid (as
shown in Figure 6). There are four possible actions for each non-terminal state, A = {left, right, up, down}. If the
action leads out of the grid, then the next state will remain to be the current state. In this experiment, we will consider a
random policy, i.e., each agent choose action from the 4 possible actions uniformly at random.

76 Chapter 4: Dynamic Programming

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r  =  !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

Rt = �1

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions possible in each
state, A = {up, down, right, left}, which deterministically cause the corresponding
state transitions, except that actions that would take the agent o↵ the grid in fact leave
the state unchanged. Thus, for instance, p(6,�1 |5, right) = 1, p(7,�1 |7, right) = 1,
and p(10, r |5, right) = 0 for all r 2 R. This is an undiscounted, episodic task. The
reward is �1 on all transitions until the terminal state is reached. The terminal state is
shaded in the figure (although it is shown in two places, it is formally one state). The
expected reward function is thus r(s, a, s0) = �1 for all states s, s0 and actions a. Suppose
the agent follows the equiprobable random policy (all actions equally likely). The left side
of Figure 4.1 shows the sequence of value functions {vk} computed by iterative policy
evaluation. The final estimate is in fact v⇡, which in this case gives for each state the
negation of the expected number of steps from that state until termination.

Exercise 4.1 In Example 4.1, if ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)? ⇤

Exercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states 12, 13, 14,
and 15, respectively. Assume that the transitions from the original states are unchanged.
What, then, is v⇡(15) for the equiprobable random policy? Now suppose the dynamics of
state 13 are also changed, such that action down from state 13 takes the agent to the new
state 15. What is v⇡(15) for the equiprobable random policy in this case? ⇤

Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5), but for action-
value functions instead of state-value functions? ⇤

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better policies.
Suppose we have determined the value function v⇡ for an arbitrary deterministic policy
⇡. For some state s we would like to know whether or not we should change the policy
to deterministically choose an action a 6= ⇡(s). We know how good it is to follow the
current policy from s—that is v⇡(s)—but would it be better or worse to change to the
new policy? One way to answer this question is to consider selecting a in s and thereafter

15

Figure 6: Illustration for grid-world experiment. This figure was generated from figure on page 76 of Sutton and Barto
(2018).

To facilitate the analysis, for each state s, we choose the feature vector as

φ(s) = es,

where es = [0 · · · 0 1 0 · · · 0] is the unit vector where the sth element is 1, and all the other elements are 0. In this case,
we have

Vθ (s) = θ
T

φ(s) = θ .

Moreover, as the state space is relatively small, it is convenient for us to get the transition matrix P, and further get

θ
∗
lc =V ∗ = (I − γP)−1E[r].

Thus we can clearly observe the estimation error ||θ̄(t)−θ ∗
lc||2 for each step. To see the impact of the number of agents,

we let N = 100, 10, 1 in each experiment.

3.1 Constant Step-size with i.i.d. Observation

First, we experimented with constant step-size, the experimental results are shown in Figure 7, Figure 8, and Figure 9.
It can be observed that θ̄(t) will converge to θ ∗

lc in all the scenarios. When we consider the metric ||θ̄(t +1)− θ̄(t)||2
and ||θ̄(t+1)−θ̄(t)||2

αt
, we can see the distributed TD(0) algorithm indeed facilitate the convergence process, the larger the

value of N is, the faster the convergence would be.

3.2 Decaying Step-size with i.i.d Observation

Next, we experimented with decaying step-size, we consider two different cases, αt =
1√
t and αt =

1
t . Figure 10, Figure

11, and Figure 12 show the the experimental results with αt =
1√
t . Figure 13 shows the experimental results with

αt =
1
t . Similar to the results of constant cases, we can see θ̄(t) will converge to θ ∗

lc in all the scenarios. Also, when we

consider the metric ||θ̄(t +1)− θ̄(t)||2 and ||θ̄(t+1)−θ̄(t)||2
αt

, we can see the distributed TD(0) algorithm indeed facilitate
the convergence process.

3.3 Results with MDP Observations

Though we have assumed that all the states are sampled i.i.d from a fixed distribution. We also experimented with cases
where the states follow a Markov chain observation model. The experimental results are shown in Figure 14 and Figure
15. It can be observed that the results are quite similar to the results with i.i.d assumptions.

8
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1 10 100 1000 10000
Step t

0
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||
(t)
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N= 100

(a)

1 10 100 1000 10000
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1 10 100 1000 10000
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0

1

2

3

4

||
(t

+
1)

(t)
|| 2

t

N= 1
N= 10
N= 100

(c)

Figure 7: Experimental results of grid world. a, the value of error ||θ̄(t)−θ ∗
lc||2 for 30000 steps. b, the value of metric

||θ̄(t + 1)− θ̄(t)||2 for 30000 steps. c, the value of metric ||θ̄(t+1)−θ̄(t)||2
αt

for 30000 steps. The discount factor γ is
chosen as 0.5. The step-size is set as αt = 0.008. All the states S(t) are sampled following the i.i.d assumptions.

1 10 100 1000 10000
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(a)

1 10 100 1000 10000
Step t
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0.02

0.03
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|| 2
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(b)
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4
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6
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(t

+
1)

(t)
|| 2

t

N= 1
N= 10
N= 100

(c)

Figure 8: Experimental results of grid world. a, the value of error ||θ̄(t)−θ ∗
lc||2 for 30000 steps. b, the value of metric

||θ̄(t + 1)− θ̄(t)||2 for 30000 steps. c, the value of metric ||θ̄(t+1)−θ̄(t)||2
αt

for 30000 steps. The discount factor γ is
chosen as 0.75. The step-size is set as αt = 0.008. All the states S(t) are sampled following the i.i.d assumptions.
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Figure 9: Experimental results of grid world. a, the value of error ||θ̄(t)−θ ∗
lc||2 for 100000 steps. b, the value of metric

||θ̄(t +1)− θ̄(t)||2 for 100000 steps. c, the value of metric ||θ̄(t+1)−θ̄(t)||2
αt

for 100000 steps. The discount factor γ is
chosen as 0.9. The step-size is set as αt = 0.008.All the states S(t) are sampled following the i.i.d assumptions.
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Figure 10: Experimental results of grid world. a, the value of error ||θ̄(t)−θ ∗
lc||2 for 30000 steps. b, the value of

metric ||θ̄(t +1)− θ̄(t)||2 for 30000 steps. c, the value of metric ||θ̄(t+1)−θ̄(t)||2
αt

for 30000 steps. The discount factor γ

is chosen as 0.5. The step-size is set as αt =
0.5√
t+1

. All the states S(t) are sampled following the i.i.d assumptions.
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Figure 11: Experimental results of grid world. a, the value of error ||θ̄(t)−θ ∗
lc||2 for 60000 steps. b, the value of

metric ||θ̄(t +1)− θ̄(t)||2 for 60000 steps. c, the value of metric ||θ̄(t+1)−θ̄(t)||2
αt

for 60000 steps. The discount factor γ

is chosen as 0.75. The step-size is set as αt =
0.5√
t+1

. All the states S(t) are sampled following the i.i.d assumptions.
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Figure 12: Experimental results of grid world. a, the value of error ||θ̄(t)−θ ∗
lc||2 for 100000 steps. b, the value of

metric ||θ̄(t +1)− θ̄(t)||2 for 100000 steps. c, the value of metric ||θ̄(t+1)−θ̄(t)||2
αt

for 100000 steps. The discount factor
γ is chosen as 0.9. The step-size is set as αt =

0.9√
t+1

. All the states S(t) are sampled following the i.i.d assumptions.
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Figure 13: Experimental results of grid world. a, the value of error ||θ̄(t)−θ ∗
lc||2 for 200000 steps. b, the value of

metric ||θ̄(t +1)− θ̄(t)||2 for 200000 steps. c, the value of metric ||θ̄(t+1)−θ̄(t)||2
αt

for 200000 steps. The discount factor
γ is chosen as 0.5. The step-size is set as αt =

0.9
t+1 . All the states S(t) are sampled following the i.i.d assumptions.
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Figure 14: Experimental results of grid world. a, the value of error ||θ̄(t)−θ ∗
lc||2 for 30000 steps. b, the value of

metric ||θ̄(t +1)− θ̄(t)||2 for 30000 steps. c, the value of metric ||θ̄(t+1)−θ̄(t)||2
αt

for 30000 steps. The discount factor γ

is chosen as 0.75. The step-size is set as αt = 0.008. All the states S(t) are sampled following the prescribed Markov
chain observation model.
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Figure 15: Experimental results of grid world. a, the value of error ||θ̄(t)−θ ∗
lc||2 for 30000 steps. b, the value of

metric ||θ̄(t +1)− θ̄(t)||2 for 30000 steps. c, the value of metric ||θ̄(t+1)−θ̄(t)||2
αt

for 30000 steps. The discount factor γ

is chosen as 0.75. The step-size is set as αt =
0.5√
t+1

. All the states S(t) are sampled following the prescribed Markov
chain observation model.
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4 Conclusion

In our experiments, the distributed TD(0) with local state do converge faster when it has more agents in the system,
although it is not a linear time speedup. From the experiments on the classic control problems in the OpenAI Gym, we
can observe that, one can get more benefit from parallelism with constant step-size than that with decaying step-size.
Also, benefit from parallelism is diminishing when we increase agent number. For the experiments on the grid world
MDP, we can get θ ∗

lc exactly. However, when we compare the value of ||θ̄(t)−θ ∗
lc||22 for different number of agents,

their performance are almost the same.
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