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A Simplification of a Step in Lin’s Proof of the
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Abstract

Structural controllability has been successfully applied to various actual physical systems, which attracts an

increasing number of scholars to devoting to the relevant theoretical or practical research. A normal first step for the

beginners in this area is to read Lin’s seminal paper on structural controllability [1]. However, the equivalence proof

of the second and third conditions of structural controllability theorem in Lin’s paper is redundant, which hinders

readers’ understanding of Lin’s work. In this tutorial, we provide an illustration of Lin’s paper and simplify the proof

mentioned above to help beginners understanding Lin’s paper.

Index Terms

Structurally Controllability, Graph Theory

I. INTRODUCTION

Controllability is a fundamental concept in control theory, which reflects whether we can control a system as we

desire. To verify the controllability of a linear time-invariant control system

ẋ = Ax+Bu, (I.1)

where normally the entries in A ∈ Rn×n represent the parameters in a dynamic system, such as the mass of a

mass-spring-damper system or the interaction relationships between nodes and strengths of edges of a network,

such as the connection in a social network and the entries in B ∈ Rn×m represent the intensity and relationship

on how the states (or the nodes) are directly affected by the inputs, it is required to know the exact value of every

entry in the matrices A and B. However, in practical situations, the exact values of the entries A and B are often

hard to obtain due to measurement errors or a lack of knowledge [1, 2].

In order to make actual physical systems applicable for controllability tests, Lin introduced the notion “Structural

Controllability” in 1974 [1]. This notion focuses on a type of linear systems called “linear structured systems”,
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which is defined in the sense that every entry in the linear structured system (Â, B̂) is either a fixed zero or a

free parameter including zero [10]. The systems with the identical locations of fixed zeros are called with the

same structure. If a structured system is controllable after assigned values to the free parameters, then we call this

structured system structurally controllable. As pointed out in [1, 2, 6], except some special values, a structurally

controllable system is controllable for nearly all the values assigned to the structured system.

Since structural controllability analysis is a powerful tool to verify the controllability of actual physical systems,

it has been applied to various fields, ranging from biological systems [2–4] to network security [5]. In turn, the

wide application of structural controllability is also attracting increasing attention to the research on its theoretical

development. To begin the research of structural controllability, whether for theoretical or practical research, a

normal first step is to read Lin’s paper [1]. Unfortunately, Lin adopted a redundant method to prove the equivalence

of the second and third conditions of the structural controllability theorem (illustrated in the following section),

which often impedes one’s understanding of his paper. To help researchers better understanding Lin’s paper, we

wrote this paper and provided a more straightforward proof regarding the equivalence of the second and third

conditions of Lin’s theorem by employing a perfect matching approach.

A. Related work

Lin’s work [1] only considered a control system with a single input, the result of which was extended to a multi-

input case in [6, 7]. In [8], the author proposed a graph theoretic interpretation for the multi-input case structural

controllability conditions. The structural controllability theorem of parameterized linear system was introduced

in [11] and the corresponding graph theoretical conditions were given in [12]. In a parameterized linear system,

some free parameters are specified to be identical. The research on structural controllability of parameterized linear

systems allows one to add more structural information of a system into the structural controllability investigation.

Another issue on structural controllability is minimal inputs problem, where the core question is to find the

minimum number of input nodes to make the system structurally controllable. In [2], the authors determined the

minimum number of input nodes by applying a perfect matching method. In [9], the author solved a class of

minimum input problem with a set of states which can not be affected by inputs.

There is also a related notion “strong structural controllability”, where if assigned arbitrary nonzero values to the

free parameters of a linear structured control system, the system remains controllable, then we call this structured

system strongly structurally controllable [13]. It is obvious to see that a control system being controllable is a

necessary condition for it to be strongly structurally controllable. The notion strong structural controllability is out

of the scope of this paper. Interested readers may refer to [13–17].

II. LIN’S THEOREM

In [1], the author adopted a graph theoretical method to prove the structural controllability theorem, which is

illustrated below [1, 2, 18, 19].

Given a matrix pair (A, b), where A ∈ Rn×n and b ∈ Rn, it can be represented by a directed graph G(A, b),

where the node set is denoted by N , and the edge set is denoted by E . Every node corresponds to one column in
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Fig. 1. A graph of a stem with four nodes.

the matrix [A, b]. In particular, the node corresponds to the column of b is called the “origin” node of the graph G.

Every free entry aij in the matrix A corresponds to one edge starting at node j and ending at node i. Similarly, a

free entry bi in the matrix b corresponds to one edge starting at node n+ 1 to node i.

We define a walk as a sequence v1, v2, · · · , vt of nodes with directed edges (v1, v2), (v2, v3), · · · , (vt−1, vt). A

directed path is defined as a walk if all of its nodes are distinct and a directed cycle is defined as a walk if all

of its nodes are distinct and v1 = vt.

Next, we define several special graph components in the graph G(A, b).

Definition 1 (stem) : A stem is a directed path starting from the origin node. The corresponding matrices are

A =



0 a12 0 · · · 0

0 0 a23 · · · 0

0 0 0
. . . 0

...
...

... · · · a(n−1)n

0 0 0 · · · 0


, b =



0

0

0
...

an(n+1)


and in Fig. 1, we show a four-node stem graph.

Definition 2 (bud). A bud is a directed cycle with an extra edge e, which ends, not beginning, in a node of the

directed cycle. The extra edge is called the distinguished edge of the bud. The corresponding matrices are

A =



0 a12 0 · · · 0

0 0 a23 · · · 0

0 0 0
. . . 0

...
...

... · · · a(n−1)n

an1 0 0 · · · 0


, b =



0

0

0
...

an(n+1)


and in Fig. 2, we present a four-node bud graph.

Definition 3 (inaccessible). If there does not exist a directed path from the origin to one node, then we call the

node “inaccessible”.

Remark 1: The presence of “inaccessible” node means there exists a permutation matrix P , such that

P−1AP =

 A11 0

A21 A22

 ;P−1b =

 0

b2

 ,

which by simple calculation, one can find that the matrix pair A11 0

A21 A22

 0

b2


is not controllable [2, 6].
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Fig. 2. A graph of a bud with four nodes.

Definition 4 (dilation). If for two node sets S and T (S), |S| > |T (S)|, then we call there exists a dilation, where

| · | denotes the cardinality of a set. Here, S ⊆ NA and the neighbor node set T (S) is defined as the node set of

all the nodes vj such that there exists an oriented edge node vj to one node vi ∈ S. Note that the origin node can

only belong to a node set T (S), not in a node set S.

In fact, a dilation is closely related to the notion “perfect matching” and the relationship will be illustrated later.

Remark 2: The presence of dilation means that the generic rank of matrix [A, b] is less than n. The generic rank

of a structure matrix M is defined to be the maximum rank that a matrix can reach as as a function of all the free

parameters in M [2, 6].

Definition 5 (cactus). The graph G(A, b) is a cactus if and only if G(A, b) = S ∪B1 ∪B2∪ · · · ∪Bt, where S is

a stem and Bi is a bud and for every i = 1, 2, · · · , t, the extra edge ei of Bi starts at S ∪B1 ∪B2 ∪ · · · ∪Bt−1.

Moreover, ei is the only edge which belongs to both bud Bi and S ∪B1 ∪B2 ∪ · · · ∪Bt−1. A graph of a cactus

is shown in Fig. 3.

Now, we can present the structural controllability theorem in Lin’s paper [1, 2].

Theorem 1:

1) A linear control system (A, b) is structurally controllable.

2) a) The directed graph G(A, b) contains no inaccessible nodes.

b) The directed graph G(A, b) contains no dilation.

3) The directed graph G(A, b) is spanned by a cactus.

Remark 3: A directed graph G(N1, E1) spanned by a directed graph G(N2, E2) is defined as N1 = N2 and

E2 ⊆ E1.

In Lin’s paper, the equivalence proof of the second and third conditions is redundant and in the next section, we

provide a perfect matching approach, which can simplify the proof.

III. PERFECT MATCHING APPROACH

In this section, we first introduce the definition of bipartite graph and perfect matching. Then we present the

simplified proof.

A. Bipartite Graph and Perfect Matching

For a directed graph, a matching is an edge subset M if no two edges in M share a common starting node or a

common ending node. A node is called matched if it is an ending node of an edge in the matching. Otherwise, it
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Fig. 3. A graph of a cactus.

is unmatched [2].

A matching with maximum cardinality is called a maximum matching. A maximum matching is perfect if all

nodes are matched.

A convenient way to find the maximum matching in a digraph is to represent the digraph with a bipartite graph.

Below we first state the definition of bipartite graph and then we present the Hall’s theorem which is a method to

find if there is a perfect matching in the bipartite graph.

Definition 6 (bipartite graph). A graph G(N , E) is called bipartite if there is a partition of N into the disjoint

subsets N = N+ ∪N−, such that every edge e ∈ E connects some vertex in N+ to some vertex in N−.

Similar to the definition in a directed graph, a bipartite graph has a perfect matching if all the nodes in N− are

matched. In fig. 4, we show a matching in a bipartite graph.

Next, we present Hall’s Theorem which is a method to test whether there exists a perfect matching in a bipartite

graph.

Theorem 2: (Hall’s Theorem [20]) A bipartite graph G(N+,N−, E) has a perfect matching if and only if for

every subset S ⊆ N−, |T (S)| > |S|, where T (S) ⊆ N+ is the neighbor node set of S.

By employing Hall’s Theorem, we can rewrite the condition 2) b) of theorem 1 as:

The bipartite graph of the directed graph G(A, b) has a perfect matching.

B. Proof Reformulation

In this section, we will provide a simplified proof demonstrating the equivalence of the second and third conditions

of Lin’s structural controllability theorem.

Proof:

First, we prove 3→ 2.

From the definition of a cactus graph, it is obvious that every node in the directed graph G(N , E), which is

spanned by a cactus graph G(N , E1), is accessible. As a result, what we need to do now is to prove the directed

graph G(N , E) has a perfect matching.
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Fig. 4. A matching in a bipartite graph.

Delete the edges of the G(N , E) so that the remaining graph is the the cactus graph G(N , E1). Then we delete

the distinguished edges of the graph G(N , E1) and denote the remaining graph by G(N , E2), which is composed

only by one or zero stem and several directed cycle graphs. One can easily verify that G(N , E2) has a perfect

matching. Thus, the bipartite graph of the directed graph G(N , E) also has a perfect matching.

Next, we show 2→ 3.

Because the bipartite graph of the directed graph G(N , E) has a perfect matching, which is denoted by Ê , we can

construct a graph G(N1, Ê1) by the following steps. First add the origin node v+n+1 ∈ N+, an edge e1 ∈ Ê , which is

incident with the node v+n+1, and the node v−1 ∈ N−, which is the other node that the edge e1 connects, to the sets

N1 and Ê1, respectively. Then add the node v+1 ∈ N+, an edge e2 ∈ Ê , which is incident with the node v+1 , and the

node v−2 ∈ N−, which is the other node that the edge e2 connects, to the sets N1 and Ê1, respectively. Next repeat

the above step until there is no matching node in N− for the node v+i ∈ N+. Thus, N1 = {v1, · · · , vi, vn+1} and

Ê1 = {e1, · · · , ei}. By definition, the graph G(N1, Ê1) is a stem.

Then we demonstrate the graph G(N −N1, Ê − Ê1) is composed of several directed cycles. Here we only show

why one directed cycle in the graph G(N −N1, Ê − Ê1) exists. The reason why other directed cycles in the graph

G(N −N1, Ê − Ê1) exist can be proved similarly.

Let N2 and E2 denote a node set and an edge set, respectively. Add a node v+i+1 ∈ N+ − N+
1 , an edge

ei+1 ∈ Ê − Ê1, which is incident with the node v+i+1, and the node v−i+2 ∈ N+−N+
1 , which is the other node that

the edge ei+1 connects, to N2 and Ê2, respectively. Then add a node v+i+2 ∈ N+ −N+
1 , an edge ei+2 ∈ Ê − Ê1,

which is incident with the node v+i+2, and the node v−i+3 ∈ N+ −N+
1 , which is the other node that the edge ei+2

connects, to N2 and Ê2, respectively. Repeat the above step until v+i+j = v−i+1. By definition, the graph G(N2, Ê2)

is a directed cycle.

Since every node is accessible, there exist edges e ∈ E − Ê so that there is a directed path from the origin to

every node and we thus obtain a cactus graph, which means G(N , E) is spanned by a cactus graph.
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IV. CONCLUSION

In this paper, we reviewed the notion structural controllability and Lin’s structural controllability theorem. We also

provided a simplified proof of the equivalence of the second and third conditions of Lin’s structural controllability

theorem.
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