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Abstract

This survey paper considers subgradient methods for
nondifferentiable optimization problem with convex objec-
tive function. Though compared with other optimization
methods, the convergence of subgradient method is rela-
tively slow. There are also some superiorities for subgradi-
ent method. The main advantage of subgradient method is
simplicity. It can use any subgradient to solve the optimiza-
tion problem, and no line search for step rule is involved.
As a result, the subgradient method is easily to be imple-
mented. Besides, the convergence proof is also relatively
simple. Moreover, another important advantage of subgra-
dient method is its robustness. This can be clearly seen from
the study of stochastic subgradient method.

1. Introduction
Subgradient methods are the principal methods used in

convex nondierentiable optimization problems.This type of
optimization arises in many applications, as well as in the
context of duality, and various general solution strategies
such as penalty function methods, regularization methods,
and decomposition methods.

The basic subgradient method is similar to the ordi-
nary gradient method for differentiable functions, but with
several notable exceptions. First, the subgradient method
applies directly to nondifferentiable functions.Second, the
step lengths are not chosen via a line search, as in the ordi-
nary gradient method. Actually,in the most common cases,
the step lengths are fixed ahead of time. Third, unlike the
ordinary gradient method, the subgradient method is not a
descent method, the function value can increase.

The basic subgradient method can be readily extended to
solve constrained problem. Besides, the subgradient meth-
ods can also be extended to handle problems with errors,
which may come from measurements, uncertainty, or the
computation is intractable.This is the stochastic subgradi-
ent method.

The subgradient method is relatively slower than New-
ton’s method, but is much simpler and can be applied to a
far wider variety of problems. By combining the subgradi-

ent method with primal or dual decomposition techniques,
it is possible to develop a simple distributed algorithm for a
certain problem.

Subgradient methods were first introduced in the Soviet
Union in the middle sixties by N. Z. Shor. Since then,
they have been extensively studied, and in general two ma-
jor classes of subgradient methods have been developed:
descent-based methods and nondescent methods.

The descent-based subgradient methods are based on
the principal idea of the function descent, which lies in
the framework of gradient-type minimization. Nondescent
subgradient methods are based on the idea of the distance
decrease (distance from the set of minima), and their im-
plementation is simpler than that of descent-based meth-
ods. For nondescent subgradient methods, the early work
of Ermoliev [Erm66] and Polyak [Pol67] was particularly
influential. Due to their simple implementation, the non-
descent subgradient methods have drawn a lot of attention,
and the literature on these methods is very rich. An exten-
sive treatment of these subgradient methods can be found
in the textbooks by Dem’yanov and Vasil’ev [2], Shor [6],
Minmox[4], Polyak [5] , Hiriart-Urruty and Lemarechal [3]
Shor [7], and Bertsekas [1]. Besides, there are also some re-
cent research based on subgradient methods have been de-
veloped, such as incremental subgradient methods [9] and
primal-dual dubgradient methods [8].

2. Basic subgradient method

First we will consider the unconstrained case. For this
part, we aim to solve the following problem:

minimize f : Rn → R, (1)

which is convex and has domain Rn.

2.1. Update rules

The definition of subgradient

A subgradient of f at x is any vector g that satisfies the
inequality

f(y) ≥ f(x) + gT (y − x), ∀y. (2)
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Update rules

The subgradient method uses the simple iteration

x(k+1) = xk − αkg
(k), (3)

where ∂f(x(k)) denotes the subdifferential of f at x(k).
Thus, at each iteration of the subgradient method, we take a
step in the direction of a negative subgradient.When f is dif-
ferentiable, the only possible choice for g(k) is ∇f(x),and
the subgradient method then reduces to the gradient method.
The condition that g(k)be a subgradient of f at x(k):

g(k) ∈ ∂f(x(k)), (4)

where ∂f(x(k)) denotes the subdifferential of f at x(k).
Subgradient method is not a descent method, it can hap-

pen that −g(k) is not a descent direction for f at x(k), in
such case, we have f(x(k+1) > f(x(k))).In other words, an
iteration of the subgradient method can increase the objec-
tive function.

To keep track of the best point found so far, we set

f
(k)
best = min{f (k−1)best , f(x(k))}, (5)

i
(k)
best = k if f(x(k)) = f

(k)
best. (6)

Then we have

f
(k)
best = min{f(x(1)), ..., f(x(k))}. (7)

i.e., the best objective value found in k iterations. Since
f
(k)
best is decreasing, it has a limit (which can be −∞).

2.2. Step size rules

In the subgradient method the step size selection is very
different from the standard gradient method. Many different
types of step size rules are used. Here I want to introduce
five basic step size rules.

• Constant step size. αk = α is a positive constant, in-
dependent of k

• Constant step length. αk = h/‖g(k)‖2, where h > 0.
This means that ‖xk+1 − xk‖2 = h.

• Square summable but not summable. The step satisfies

αk ≥ 0,

∞∑
k=1

α2
k <∞,

∞∑
k=1

αk =∞. (8)

One typical example is αk = a/(b+ k), where a > 0
and b > 0.

• Nonsummable diminishing.The step size satisfy

αk ≥ 0, lim
k→∞

αk = 0,

∞∑
k=1

αk =∞. (9)

Step sizes that satisfy this condition are called dimin-
ishing step size rules. A typical example is αk =
a/
√
k, where a > 0.

• Nonsummable diminishing step lengths. The step sizes
are chosen as αk = γk/‖g(k)‖2, where

γk ≥ 0, lim
k→∞

γk = 0,

∞∑
k=1

γk =∞. (10)

The most important feature of these choices is that these
step sizes are determined before the algorithm is run; they
do not depend on any data computed during the algorithm.

2.3. Convergence Analysis

Next, a proof of some typical convergence results for the
subgradient method will be provided.

Assumptions

We assume that there is a minimizer of f , say x∗. We also
make one other assumption on f : assume that the norm
of the subgradients is bounded, i.e., there is a G such that
‖g(k)‖2 ≤ Gfor all k. This will be the case if, for example,
f satisfies the Lipschitz condition

|f(u)− f(v)| ≤ G‖u− v‖2, (11)

for all u, v, because then ‖g‖2 ≤ G for any g ∈ ∂(x),
and any x.

Proof

For the standard gradient descent method, the convergence
proof is based on the function value decreasing at each step.
In the subgradient method, the key quantity is not the func-
tion value (which often increases); it is the Euclidean dis-
tance to the optimal set.

As x∗ is a point that minimizes f , i.e., it is an arbitrary
optimal point. We have

‖x(k+1) − x∗‖22 (12)

= ‖x(k) − αkg
(k) − x∗‖22

= ‖x(k) − x∗‖22 − 2αkg
(k)T (x(k) − x∗) + α2

k‖g(k)‖22
≤ ‖x(k) − x∗‖22 − 2αk(f(x

(k))− f∗) + α2
k‖g(k)‖22,

where f∗ = f(x∗). The last inequality follows from the
definition of subgradient, which gives

f(x∗) ≥ f(x(k)) + g(k)T (x∗ − x(k)).
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Applying the inequality above recursively, we have

‖x(k+1) − x∗‖22 ≤‖x(1) − x∗‖22 − 2

k∑
i=1

αi(f(x
(i))− f∗)

+

k∑
i=1

α2
i ‖g(i)‖22, (13)

using ‖x(k+1) − x∗‖22 ≥ 0 and ‖x(1) − x∗‖22 ≤ R, we have

2

k∑
i=1

αi(f(x
(i)) ≤ R2 +

k∑
i=1

α2
i ‖g(i)‖22.

Combining this with

k∑
i=1

αi(f(x
(i) − f∗) ≥ (

k∑
i=1

αi) min
i=1,...,k

f(x(i) − f∗)

= (

k∑
i=1

αi)(f
(k)
best − f

∗). (14)

we have the inequality

f
(k)
best − f

∗ = min
i=1,...,k

f(x(i) − f∗) ≤
R2 +

∑k
i=1 α

2
i ‖g(i)‖22

2
∑k

i=1 αi

.

(15)

Finally, using the assumption ‖g(k)‖2 ≤ G, we obtain the
basic inequality

f
(k)
best − f

∗ ≤
R2 +G2

∑k
i=1 α

2
i

2
∑k

i=1 αi

. (16)

From this inequality we can read off various convergence
results.

Convergence Results

• Constant step size. When αk = α, we have

f
(k)
best − f

∗ ≤ R2 +G2α2k

2αk
(17)

the righthand side converges to G2α/2 as k → ∞.
Thus, for the subgradient method with fixed step size
α, f (k)best converges to within G2α/2 of optimal. We
also find that f(x(k)) − f∗ ≤ G2α within at most
R2/(G2α2) steps.

• Constant step length. With αk = γ/‖g(k)‖2, the in-
equality (2) becomes

f
(k)
best − f

∗ ≤ R2 + γ2k

2
∑k

i=1 αi

≤ R2 + γ2k

2γk/G
(18)

using αi ≥ γ/G. The righthand converges to Gγ/2 of
optimal.

• Square summable but not summable. Now suppose

‖α‖22 =

∞∑
k=1

α2
k <∞,

∞∑
k=1

αk =∞ (19)

Then we have

f
(k)
best − f

∗ ≤ R2 +G2‖α‖22
2
∑k

i=1 αi

(20)

which converges to zero as k →∞, since the numera-
tor converges to R2 + G2‖α‖22 , and the denominator
grows without bound. Thus, the subgradient method
converges (in the sense f (k)best − f∗).

• Diminishing step size rule. If the sequence αk con-
verges to zero and is nonsummable, then the righthand
side of the inequality 8 converges to zero, which im-
plies the subgradient method converges. To show this,
let ε > 0. Then there exists an integer N1 such that
αi ≤ ε/G2 for all i > N1. There also exists an integer
N2 such that

N2∑
i=1

αi ≥
1

ε

(
R2 +G2

N2∑
i=1

α2
i

)
, (21)

In summary, for constant step size and constant step
length, the subgradient algorithm is guaranteed to converge
to within some range of the optimal value, i.e., we have

lim
k→∞

f
(k)
best − f

∗ < ε, (22)

where f∗ denotes the optimal value of the problem. The
number ε is a function of the step size parameter h, and
decrease with it.

For the diminishing step size and step length rules (there-
fore also the square summable but not summable step size
rule), the algorithm is guaranteed to converge to the optimal
value, i.e., we have

lim
k→∞

f
(k)
best = f∗. (23)

Its remarkable that such a simple algorithm can be used
to minimize any convex function for which you can com-
pute a subgradient at each point.

2.4. Algorithm

The algorithm of subgradient method for unconstrained
problem can be summarized as:
Algorithm 1
1. Set k := 1 and choose an infinite sequence of positive
step size value αk.
2. Compute a subgradient g(k) ∈ ∂f(xk) .
3. Update x(k+1) = xk − αkg

(k).
4. If algorithm has not converged, then set k := k + 1
and go to step 2.
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3. Projected subgradient method
One important extension of the subgradient method is the

projected subgradient method, which solves the following
constrained convex optimization problem

minimize f(x)

subject to x ∈ C, (24)

where C is a convex set.

3.1. Update rules

The update rule of the projected subgradient method is
given by

x(k+1) = P (x(k) − αkg
(k)), (25)

where P is (Euclidean) projection on C, and g(k) is any
subgradient of f at x(k).

The step size rules of the projected subgradient method
can also adopt the step rules given in the basic subgradient
method part.

3.2. Convergence Analysis

The convergence proofs for the subgradient method can
be readily extended to handle the projected subgradient
method.

Let z(k+1) = x(k) − αkg
(k), i.e., a standard subgradient

update, before the projection back onto C. Then we have

‖z(k+1) − x∗‖
2

2

= ‖x(k) − αkg
(k) − x∗‖

2

2

= ‖x(k) − x∗‖
2

2 − 2αkg
(k)T (x(k) − x∗) + α2

k‖g(k)‖
2

2

≤ ‖x(k) − x∗‖
2

2 − 2αk(f(x
(k))− f∗) + α2

k‖g(k)‖
2

2.
(26)

Besides, when we project a point onto C, we move closer to
every point in C, and in particular, any optimal point, i.e.,

‖x(k+1) − x∗‖2 = ‖P (z(k+1))− x∗‖2 ≤ ‖z
(k+1) − x∗‖2.

(27)
Combine with the inequality (13), we get

‖x(k+1) − x∗‖
2

2 ≤‖x
(k) − x∗‖

2

2 − 2αk(f(x
(k))− f∗)

+ α2
k‖g(k)‖

2

2. (28)

The remaining proof proceeds exactly as in the ordinary
subgradient method.

Finally, we can get a similar convergence results as basic
subgradient method.

3.3. Algorithm

The algorithm of projected subgradient method for con-
strained problem can be summarized as:

Algorithm 2
1. Set k := 1 and choose an infinite sequence of positive
step size value αk.
2. Compute a subgradient g(k) ∈ ∂f(xk) .
3. Update x(k+1) = P (xk − αkg

(k)).
4. If algorithm has not converged, then set k := k + 1
and go to step 2.

4. Stochastic subgradient method
When the subgradient of the objective function is diffi-

cult to compute exactly due to various reasons such as er-
rors in measurements or intractability in the computation,
we can use a noisy estimate of the subgradient for optimiza-
tion. With a proper choice of the step size, we can guarantee
the convergence with probability 1 or even stronger conclu-
sions. Stochastic methods also apply when the objective
function itself is difficult to compute exactly.

4.1. Update rules:

The definition of noisy unbiased subgradient

Random vector g̃ ∈ Rn is a noisy unbiased subgradient for
f : Rn → R at x, if Random vector g̃ ∈ Rn is a noisy
unbiased subgradient for

f(z) ≥ f(x) + (Eg̃)T (z − x) (29)

i.e., g = Eg̃ ∈ ∂f(x)
The noise can represent error in computing , measurement
noise, Monte Carlo sampling error, etc

Update rules

Stochastic subgradient method is the subgradient method,
using noisy unbiased subgradients:

x(k+1) = x(k) − αkg̃
(k), (30)

where x(k) is kth iterate, g̃ is any noisy unbiased subgra-
dient of (convex) f at x(k), αk > 0 is the kth step size.
Just like the basic subgradient method, here we also define
f
(k)
best = min{f(x(1)), ..., f(x(k))} to keep track of the best

found point and corresponding function value.

4.2. Convergence Analysis

A very basic convergence result for the stochastic sub-
gradient method will be given. First, the assumptions will
be given as following:

• f∗ = infx f(x) > −∞, with f(x∗) = f∗

• E‖g(k)‖22 ≤ G2 for all k

• E‖x(1) − x∗‖22 ≤ R2
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• step sizes are square-summable but not summable

It can be proved that

E
(k)
best − f

∗ ≤ R2 +G2 ‖ α ‖22
2
∑k

i=1 αi

(31)

we can get the convergence in expectation:

lim
k→∞

E
(k)
best ≥ f

∗ (32)

for various step size rules such as square-summable but not
summable sequence (e.g.αk = 1/k), and not summable
diminishing sequence (e.g.αk = 1/

√
k).

Using Markovs inequality, we obtain the convergence in
probability, i.e., for any ε > 0,

lim
k→∞

Prob(f
(k)
best ≥ f

∗ + ε) = 0

More sophisticated methods can be used to show almost
sure convergence.

4.3. Algorithm

Algorithm 3
1. Set k := 1 and choose an infinite sequence of positive
step size value αk.
2. Compute a noisy subgradient Eg̃(k) ∈ ∂f(xk) .
3. Update x(k+1) = xk − αkg̃

(k).
4. If algorithm has not converged, then set k := k + 1
and go to step 2.

5. Recent research
Though subgradient method has been proposed for sev-

eral decades, there are also many recent research are pro-
ceeding based on the scheme of subgradient method. Here
I want to introduce two interesting recent research papers
[9, 8] on subgradient methods.

The first paper [9] investigates incremental subgradient
methods for nondifferentiable optimization. It mainly in-
vestigates a class of subgradient methods for minimizing a
convex function that consists of the sum of a large number
of component functions. The idea is to perform the subgra-
dient iteration incrementally, by sequentially taking steps
along the subgradients of the component functions, with in-
termediate adjustment of the variables after processingeac h
component function. By randomizing the order of selection
of component functions for iteration, the convergence rate
is substantially improved.

The second paper [8] investigates primal-dual subgradi-
ent methods for convex problems. The proposed primal-
dual subgradient schemes can always generate a feasible
approximation to the optimum of an appropriately formu-
lated dual problem, so that these methods can have reliable

stopping criterion. The main difference from classical ap-
proach is that it can produce two control sequences, so the
boundedness of the sequence of primal test points can be
guaranteed even in the case of unbounded feasible set.

6. Conclusion
This paper surveys the subgradient methods nondiffer-

entiable minimization problem.The background of subgra-
dient methods has been introduced. Three major subgradi-
ent methods, i.e., basic subgradient methods, projected sub-
gradients, and stochastic subgardient methods, have been
investigated. The detailed convergence analysis and cor-
responding algorithm of the three methods have been pro-
vided. Beside, some recent research based on subgradient
methods have been introduced.
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